Petitioner's Exhibit 2

Shell Offshore Inc. 3601 C Street, Suite 1334 Anchorage, AK 99503

December 29, 2006

Daniel L. Meyer Office of Air, Waste and Toxics U.S. EPA, Region 10 1200 Sixth Avenue, OAQ-107 Seattle, WA 98101

Re: Shell Kulluk 40 CFR Part 55 Preconstruction Permit Application for the 2007 – 2009 Beaufort Sea OCS Exploration Drilling Program

Frontier Discoverer 40 CFR Part 55 Preconstruction Permit Application for the 2007 – 2009 Beaufort Sea OCS Exploration Drilling Program

Dear Mr. Meyer:

Please find enclosed two minor source air permit applications for the Shell Kulluk and the Frontier Discoverer exploratory drilling programs. The applications are a follow-up on Shell Offshore, Inc.'s March 22, 2006, notice of intent (NOI) letter to EPA to conduct exploratory drilling activity on its OCS lease-holding blocks located on the Beaufort Sea, Alaska. As you recall, EPA and Shell Offshore, Inc. (SOI) previously discussed the air permitting requirements for these two exploratory drilling programs this past September. Shell believes the two air permit applications comport with our mutual understanding of the EPA permitting requirements, including the ambient air quality impact analysis required under Alaska regulation for minor sources.

Shell will need a pre-construction permit by April 2007 to meet its anticipated August 1, 2007, project start date. As you can imagine, the ice conditions in the Beaufort Sea can significantly affect the project start date and the potential length of each drilling season, and thus any significant delay beyond April 2007 could threaten the 2007 drilling season. Representatives from AES Regulatory & Technical Services (AES RTS), Shell, and AES RTS's sub-contractor, Air Sciences Inc., will be available to assist the EPA in any way to process the air permitting documents. If you have any questions regarding this submittal, please contact Wayne Wooster, Air Sciences Inc., at (503) 525-9394 or at wwooster@airsci.com. For any questions regarding the project, please contact me (907) 770-3700 or at susan.childs@shell.com

Sincerely yours,

Shell Offshore, Inc.

Susan Childe

Susan Childs Regulatory Coordinator, Alaska

Enclosures

Mr. Daniel L. Meyer December 29, 2006 Page 2 of 2

cc: Anita Frankel, EPA Region 10 Rick Fox, Shell Susan Childs, Shell Keith Craik, Shell Brad Boschetto, Shell Kate Marstall, Shell Bill Walker, ADEC, DAQ Jeff Walker, MMS Rance Wall, MMS Don Perrin, ADNR, OPMP Kyle Parker, Patton & Boggs John Iani, VanNess Feldman Gene Pavia, AES RTS Greg Horner, AES RTS Wayne Wooster, Air Sciences Inc.

Outer Continental Shelf Pre-Construction Air Permit Application

Frontier Discoverer 2007 – 2009 Beaufort Sea Exploratory Drilling Program

Prepared for: SHELL OFFSHORE, INC.

PROJECT NO. 180-15 DECEMBER 29, 2006

CONTENTS

1 INTRODUCTION AND PROJECT DESCRIPTION	1
2 SOURCE DESCRIPTION AND EMISSIONS EVALUATION	3
 2.1 Frontier Discoverer Fleet Configuration 2.2 Frontier Discoverer Fleet Emission Sources and Emission Estimate 2.3 Frontier Discoverer Owner Requested Limit (ORL)	3 4 7
3 REGULATORY APPLICABILITY	9
 3.1 EPA Guidance and 40 CFR Part 55 NOIs	9 . 10 . 10 10 10 11
4 AMBIENT IMPACT ANALYSIS (DISPERSION MODELING)	. 13
 4.1 Source Characerization 4.2 Modeled Emissions 4.3 Model Selection 4.4 Meteorological Data 4.5 Background Concentrations 4.6 Evaluation Methodology 4.7 Modeling Results 	. 13 . 21 . 23 23 24 24 25

Page

Tables

6
7
8
15
21
22
22
23
24
25

Figures

Figure 1:	Project Location Map	2
Figure 2:	Configuration of Platform Equipment	16
Figure 3:	Modeling Configuration for Drill Rig and Support Vessels	18

CONTENTS - continued

Appendices

- Appendix A: Drawings and Photographs
- Appendix B: Emission Calculations
- Appendix C: ADEC Owner Request Limit Forms
- Appendix D: 40 CFR Part 55 NOI Letters
- Appendix E: Modeling Calculations and SCREEN3 Model Output

SECTION 1 INTRODUCTION AND PROJECT DESCRIPTION

This application is submitted to U.S. EPA's Region 10 (EPA) office, pursuant to the requirements of Outer Continental Shelf Air Regulations, 40 CFR Part 55. Shell Offshore, Inc. (SOI) wishes to conduct exploratory drilling activity at its oil and gas lease blocks on Outer Continental Shelf (OCS) waters in the Beaufort Sea using the Frontier Discoverer drilling vessel and associated support vessels. Because of the distance from the Alaska shore, the drilling activities will be regulated by the U.S. EPA rather than the Alaska Department of Environmental Conservation (ADEC). Figure 1 shows the locations of SOI's Beaufort Sea OCS lease blocks. SOI intends to conduct a three-year exploratory drilling program, 2007 through 2009, although drilling activity may occur in 2010 and 2011 if ice conditions prevent significant exploratory drilling activity in 2007, 2008, or 2009.

SOI believes that the available drilling season will range up to 120 days per calendar year, weather and ice conditions permitting. SOI anticipates that drilling operations per drill site will range between 30 and 60 days. SOI, therefore, anticipates drilling up to three drill site locations per year. The drilling season is projected to run from approximately August 1 through November 30 each year, again weather and ice conditions permitting. Ice conditions in the Beaufort Sea were particularly heavy in 2006 resulting in a significantly less than an expected 90-day drilling season. Pursuant to the 40 CFR 55.2 OCS source definition, each drill site is a stationary source, so the Frontier Discoverer drilling activities could consist of a maximum of three sequential stationary sources per year. This application is, in fact, a single application for multiple portable stationary sources, all of which will be equal to or smaller than the hypothetical stationary source described herein.

SOI intends to conduct drilling operations in 2007 at its OCS lease block locations in Camden Bay, located in the central Beaufort Sea. SOI may conduct exploratory drilling operations at its other OCS lease block locations in the Beaufort Sea in 2008 and 2009. The proposed 2007 drilling sites are located approximately 13 to 16 miles from the state of Alaska shoreline. Drilling activities will be curtailed in the event that large ice flows force the drilling vessel off of the drilling site. For example, SOI experienced seven days and fifteen days of "force offs," respectively, during its 1985 and 1986 Beaufort Sea exploration drilling program. In the event of an ice flow caused "force off," drilling activities will resume once favorable ice conditions allow the drilling vessel to safely return to the drilling site.

Each drill site will carry with it a safety exclusion zone around the Frontier Discoverer, established by the U.S. Coast Guard, protecting ocean traffic from possible entanglement with the Frontier Discoverer anchors and any close-in related anchor and ice management. This safety exclusion zone establishes the ambient air boundary around the stationary source.

Lynx: 15067-204.mxd, 11/08/06, R00

SOURCE DESCRIPTION AND EMISSIONS EVALUATION

This section provides a description of the Frontier Discoverer fleet configuration; a description of the project vessels emission units, and a project vessel-wide emission estimate. This section also includes SOI's request for an owner requested limit (ORL) to maintain synthetic minor permit status.

2.1 Frontier Discoverer Fleet Configuration

The Frontier Discoverer Exploratory Drilling Program exploration drilling activities will be conducted from the Frontier Discoverer, a self-propelled drilling vessel, and assisted by a number of associated support vessels. The associated support vessels will include two icebreakers, a re-supply vessel, and an oil spill response (OSR) fleet. The Kapitan Dranitsyn will perform primary ice management duty (ice breaking). The Fennica (or its identical sister vessel the Nordica) will assist the Kapitan Dranitsyn with ice management duty in 2007 through 2009. The Jim Kilabuk will serve as the re-supply vessel. The Frontier Discoverer OSR fleet will consist of one larger vessel and a number of smaller craft. Photographs and diagrams of the Frontier Discoverer and associated support vessels are provided in Appendix A.

The exploratory drilling process consists of three phases, drilling vessel placement, drilling operations, and drilling vessel removal, all of which are considered part of the stationary sources to be permitted.

Drilling vessel placement: Prior to the rig placement and anchoring to the seabed in federal OCS waters, the Frontier Discoverer is simply a self-propelled marine vessel and as such is not triggering the definition of an OCS source. Pursuant to 40 CFR 55.2, the Frontier Discoverer becomes an OCS source once it is placed and anchored to the seabed on OCS waters. The Frontier Discoverer will sail to the Beaufort Sea along with its supporting icebreaker vessels to the SOI lease-holding OCS drill site. One of the icebreakers will assist the Frontier Discoverer to anchor to the seabed. The Frontier Discoverer anchor pattern consists of eight anchors, and each anchor will reach approximately 500 meters away from the Frontier Discoverer. The entire anchor setting process is estimated to take less than 24 hours. SOI has contacted the U.S. Coast Guard to obtain a Safety Exclusion Zone around the Frontier Discoverer pursuant to 33 CFR Part 147 to help ensure that the public remains at a safe distance from the drilling platform and marine support vessels. A copy of the Safety Exclusion Zone Application will be submitted to the EPA under a separate cover. The U.S. Coast Guard routinely authorizes Safety Exclusion Zones up to 500 meters away from an OCS source, and thus SOI anticipates receiving a Safety Exclusion Zone of at least 500 meters from the edge of the Frontier Discoverer drilling vessel. Following the rig placement and anchoring to the seabed, the two icebreakers will move away from the Frontier

Discoverer typically three to twelve miles (five to twenty kilometers) upwind to perform ice management activity.

Drilling vessel drilling operations: Following the rig placement and anchor setting, the Frontier Discoverer will commence exploratory drilling operations (and become an OCS source as defined in 40 CFR 55.2). SOI expects exploratory drilling operations to last about 30 days per site. Under ideal ice conditions and unanticipated drilling issues the drilling program could possibly continue for up to 60 days per lease block drill site location, but SOI considers a 43-day drilling program to represent a conservatively long estimate, and maximum emissions are based on a 43day drilling program. When the exploratory drilling operation is completed, the two icebreakers will assist in retrieving the Frontier Discoverer anchors. This task will be completed in about 24 hours. The Frontier Discoverer will then sail to the next OCS lease-holding drill site location where the process is repeated. SOI will station its OSR fleet adjacent (typically within one to two kilometers) to the Frontier Discoverer during periods of potential penetration into hydrocarbon bearing strata. The OSR fleet will be standing by in the case of a spill and will also conduct oil spill response drill exercises. The Frontier Discoverer will be fully outfitted prior to the beginning of each drilling season. Personnel and some provisions will be shuttled to the Frontier Discoverer from shore by helicopter. Diesel fuel and other provisions will be provided to the Frontier Discoverer by the Jim Kilabuk every two to three weeks during the drilling season.

Drilling vessel removal: At the end of each drilling season, the two icebreakers will assist the Frontier Discoverer to pull anchors and then sail out of the Arctic theater to Southeast Asia or other off-season operating location.

2.2 Frontier Discoverer Fleet Emission Sources and Emission Estimate

The Frontier Discoverer Exploratory Drilling Program consists of the Frontier Discoverer drilling vessel, two icebreaker vessels, a re-supply vessel, and an oil spill response (OSR) fleet. The sources of emissions for the Frontier Discoverer and its associated marine support vessels consist primarily of internal combustion engines and heaters. There will be no flares or other industrial sources, except for one incinerator located on an icebreaker. The combustion sources consist of marine/non-road compression-ignition internal combustion engines, electrical generators, and boilers and heaters. All of these combustion sources will be fired by diesel fuel. The engines will have the purpose of generating electricity, pumping, compressing, providing direct drive mechanical power, and for powering mobile machinery. The Frontier Discoverer Exploratory Drilling Program Project emissions are generated from a relatively few large emissions sources: the Frontier Discoverer propulsion engine and main drilling engines and the support vessels propulsion engines. For example, the Frontier Discoverer propulsion engine, main drilling engines, and deck cranes engines account for 95 percent to more than 98 percent of the vessel emissions. In addition, the support vessels main propulsion engines/electrical generators and auxiliary engines account for 98 percent to more than 99 percent of the support vessel emissions.

SOI estimates the Frontier Discoverer drilling vessel will account for approximately 10 percent to 20 percent of the combined fleet emissions; the icebreaker vessels (the Kapitan Dranitsyn and the Nordica) will account for approximately 70 percent to 80 percent of the combined fleet emissions; and the OSR fleet vessels will account for approximately 1 to 2 percent of the combined fleet emissions. SOI estimates the re-supply vessel, the Jim Kilabuk, will account for less than 1 percent of the combined fleet emissions. The Frontier Discoverer Exploratory Drilling Program vessels, combustion sources identification, size rating, emission factor, hourly emissions, and project site yearly emissions are provided in Appendix B.

Below, SOI presents its maximum expected emissions from the stationary source so that the approximate split in emissions among all of the sources and the largest source units are apparent. The proposed compliance equation estimates emissions for these sources based on fuel consumption. As a practical matter of avoiding the tracking of inconsequential source units, the emissions for the smaller sources are proposed to be held constant. Any imprecision in these is assumed to be less than 5 tons per year so that even if the estimate is off by nearly 5 tons per year, the total NO_x emissions will remain below the 250-ton-per-year major new source review threshold value.

Frontier Discoverer Drilling Vessel: SOI believes the drilling vessel operations and thus emissions per drill site location will be fairly consistent irrespective of the Beaufort Sea ice conditions, and thus SOI can reasonably predict maximum emissions from the Frontier Discoverer drilling vessel and can therefore estimate the drilling vessel emissions with a high degree of certainty. For example, SOI estimates the Frontier Discoverer drilling vessel NO_x emissions from a 43-day drilling site will be approximately 52 tons or about 21 percent of the Prevention of Significant Deterioration (PSD) 250-ton-per-year major source review threshold.

Frontier Discoverer Associated Support Vessels: SOI's prediction of maximum emissions from the associated support vessels, primarily the two icebreaker vessels, is imprecise; however, it is expected to account for 70 percent to 80 percent of the combined fleet emissions. The icebreaker vessels emissions will depend greatly on the ice conditions experienced in the Beaufort Sea with light ice conditions resulting in lesser engine load factor and lower emissions, and heavy ice conditions resulting in a higher engine load factor and higher emissions.

SOI, in an attempt to estimate potential icebreaker vessels emissions, evaluated the ice conditions in the Beaufort for the past three years and determined a weighted average of "open water," "moderate ice," and "heavy ice" conditions. For this permit application SOI assumed open water, moderate ice, and heavy ice conditions at 62 percent, 23 percent, and 15 percent, respectively. SOI applied a varying engine usage/load factor for each open water/ice condition to determine a weighted engine horsepower-hours factor for all of the associated vessel emission units. SOI obtained engine load factors from the support vessels owner and/or operator for each open water/ice condition.

each emission unit using the engine load factors for each open water/ice condition. SOI applied the applicable engine emission factor (e.g., vendor specification, EPA AP42, etc.) to each of the emission units "equivalent operating days" to calculate the Frontier Discoverer Exploratory Drilling Program Project estimated emissions (tons per year) per drill site. SOI believes the emissions from the Frontier Discoverer drilling vessel will not be as dependent on open water/ice conditions except in the case of very heavy ice that the icebreaker vessels cannot safely and effectively manage and thus forces the drilling vessel off of the drill site. Likewise, SOI believes the emissions from the OSR fleet and the re-supply vessel will be unaffected by open water/ice conditions. The OSR fleet emission estimates conservatively assume that the OSR fleet would be with the drilling vessel for the duration of the drilling activity even though the potential days of a hydrocarbon release is less than the number of drilling days, i.e., drilling the mud line cellar, installing piping/casing, plugging the well.

SOI intends to collect generated on-site trash from the Frontier Discoverer for off-site disposal/management and/or for incineration on one of the icebreaker vessels incinerators. SOI will not incinerate trash on the Frontier Discoverer. Nor does SOI intend to flare drilling well off-gases during the project.

With a stationary source such as this, which includes large machinery that only operates at capacity for short periods of time, maximum emissions are based on an assemblage of reasonable maximum activity level assumptions, none of which are absolute maxima. These assumptions include length of drilling program, number of engines needed for drilling, time of icebreaker activity at maximum power, etc. Using these assumptions (listed in Appendix B) the maximum emissions for NO_x, CO, PM₁₀, SO₂, and VOC for the combined fleet per drill site per calendar year are estimated and the estimates presented in Table 1. The estimated diesel fuel consumption for this emission estimate is presented in Table 2. The emissions from all vessels associated with the drilling project have been calculated and included, following the requirements of 40 CFR 55.4(b)(3). The annual emissions of hazardous air pollutants ("HAPs") from the Frontier Discoverer and its associated support vessels are less than 10 tons for each HAP and less than 25 tons for all HAPs. All emission calculations are provided in Appendix B.

	NO _x	СО	PM10	VOC	SO ₂
Emissions	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Frontier Discoverer	51.8	6.7	1.7	0.9	4.7
Kapitan Dranitsyn	107.6	37.1	3.4	7.5	7.4
Fennica/Nordica	80.5	2.9	1.7	2.8	5.4
Jim Kilabuk	1.2	0.3	0.03	0.06	0.07
Frontier Discoverer OSR Fleet	3.9	1.0	0.08	0.8	0.4
Total	245.0	47.9	7.0	11.8	17.7

Material	Quantity gallons	Quantity cubic meters
Frontier Discoverer drilling vessel	357,743	1,354
Kapitan Dranitsyn	587,867	2,225
Fennica/Nordica	458,345	1,735
Jim Kilabuk	5,046	19
Frontier Discoverer OSR Fleet	23,800	90
Total Diesel Fuel Consumption	1,432,801	5,424

Table 2: Frontier Discoverer Fleet Diesel Fuel Consumption Estimate

2.3 Frontier Discoverer Owner Requested Limit (ORL)

The drilling operation (stationary source) carries with it uncertainties in length of drilling at each site, and weather and ice conditions associated in support of drilling at each site. Therefore, it is impossible to estimate precisely the quantity of emissions associated with each stationary source. The drilling emissions may be above expectation, while ice management vessel use might be below expectation. The emissions defined in Table 1 are considered to represent a reasonable maximum, and SOI is confident that it will be able to execute each drilling program within these limits. In order to demonstrate synthetic minor source status, SOI proposes a facility-wide emissions cap, tracked by fuel consumption of the largest emitters, using an equation for determination of compliance with a 245-ton-per-year NO_x threshold. Diesel fuel consumption of the largest source units would be measured every day, and the equation would be tested every 30 days to demonstrate an annual emission rate within the 245-ton-per-year threshold. Since all other combustion related criteria pollutants will be well below this quantity, and they track with the combustion related NO_x emissions, no other compliance tracking will be necessary.

SOI proposes to group the sources by applicable emission factor (all CAT 399 engines as one group, Mitsubishi 6UEC65 as a second group, etc.) and calculate emissions from each group by multiplying that group's fuel consumption by the applicable source-type emission factor, multiplied by the appropriate heat rates and unit conversions. There are several small sources with emissions below 4 tons per year that SOI proposes to not track, but to use the drill site NO_x emission estimate as a constant in the compliance equation. SOI will then sum each source group's emissions to determine the project fleet-wide emissions running total. SOI proposes to implement fuel consumption monitoring on each project vessel on a 30-day basis, to ensure that the project-wide annual NO_x emissions (for each drill site) remain less than 245 tons per drill site per year.

SOI proposes the following compliance equation:

$$\begin{split} &K_{RICE}*((F_{A1}*EF_{A1})+(F_{A2}*EF_{A2})+(F_{B1}*EF_{B1})+(F_{C1}*EF_{C1}))+K_{HEAT}*((F_{A3}*EF_{A3})+(F_{B2}*EF_{B2})\\ &+(F_{C2}*EF_{C2}))+2.6+1.2+3.9\ <\ 245\ tpy \end{split}$$

Where:

KRICE	=	137,000 (Btu/gal) / 7,000 (Btu/hp-hr) / 2000 (lb/ton) = 0.00979 Hp-hr-ton/gal-lb
KHEAT	=	137,000 (Btu/gal)/1,000,000 (Btu/mmBtu)/ 2,000 (lb/ton) = 0.0000685 mmBtu
		-ton/gal-lb
Fi	=	fuel consumption per source group (i)
Efi	=	emission factor per source group (i)
2.6	=	FD remaining emissions (tons)
1.2	=	Jim Kilabuk emissions (tons)
3.9	=	OSR Fleet emissions (tons)

Table 3: Frontier Discoverer Project ORL Variables

	Vessel Source	NO _x Emission Factor
Source Group	Identification	(EF)
FD six Caterpillar 399 main drilling engines	A1	0.0162 lb/hp-hr
FD Mit. 6UEC65 main propulsion engine	A2	0.024 lb/hp-hr
FD boilers	A3	0.201 lb/mmBtu
KD main and auxiliary propulsion engines	B1	0.024 lb/hp-hr
KD boilers	B2	0.143 lb/mmBtu
F/N four main propulsion engines	C1	0.0189 lb/hp-hr
F/N two boilers	C2	0.143 lb/mmBtu

SOI has included vessel diesel fuel monitoring and resulting emission calculation as an ORL in the permit application forms in Appendix C. The applicable NO_x emission factors are included in Table 3. An example calculation of the compliance equation from fuel consumption is presented in Appendix B.

SOI proposes to begin fuel consumption monitoring and record-keeping once the Frontier Discoverer and the icebreaker vessels are on OCS waters and within 25 miles of the project drilling site. SOI will also begin fuel consumption monitoring and record-keeping for the resupply vessel and the OSR fleet vessels once these vessels are on OCS waters and within 25 miles of the project drilling site.

SECTION 3 REGULATORY APPLICABILITY

This section provides the applicable regulatory administrative history prior to the submittal of this application; a description on the EPA's guidance in permitting this project; a brief discussion on the Notice of Intent requirements contained in 40 CFR Part 55; the roles of the respective regulatory agencies, EPA and the Alaska Department of Environmental Conservation (ADEC); and a discussion of the Corresponding Onshore Area (COA) air quality designation, and applicable federal and state regulatory requirements.

3.1 EPA Guidance and 40 CFR Part 55 NOIs

SOI met with the EPA in September 2006 to discuss the air quality permitting requirements and applicable guidance documents pertaining to this project. Following this meeting the EPA confirmed that the Frontier Discoverer drilling vessel, when anchored or otherwise attached to the seabed at each drill site, was a separate "stationary source." The EPA's position is consistent with the requirements of 40 CFR 55.2 whereby the Frontier Discoverer becomes an OCS source once it is placed and anchored to the seabed on OCS waters. The EPA's guidance further required that the emissions from the project's associated support vessels be included in the "source" potential-to-emit (PTE) when the support vessels are within 25 miles of the anchored drilling vessel. These guidance interpretations are consistent with the OCS source definition found in 40 CFR 55.2.

SOI submitted the required Notice of Intent (NOI) for the Pre-Construction Air Permit for OCS activities (specifically a proposed 2006 Mud Line Cellar project) to the EPA on March 22, 2006. A copy of the NOI was also submitted to the ADEC as required by 40 CFR 55.4(a). The EPA pursuant to 40 CFR 55.12(c)(1) and section 328(a)(1) of the Clean Air Act published a proposed Part 55 OCS Consistency Determination for ADEC's current air quality regulations (18 AAC 50 Air Quality Control as amended through December 3, 2005) in the August 22, 2006, Federal Register (V.71, No. 162, p. 48879 – 48883) to ensure that the part 55 requirements were consistent with the corresponding onshore area (COA) state of Alaska requirements. ADEC recently amended its 18 AAC 50 Air Quality Control regulations through December 14, 2006. However, ADEC made no changes to its December 3, 2005, regulations. SOI nevertheless updated its March 2006 NOI and attached it to this application in Appendix D. A second EPA consistency determination is unnecessary since the December 14, 2006, ADEC regulations were not changed from the December 3, 2005, ADEC regulations. SOI therefore believes it has satisfied all of the applicable administrative requirements pursuant to 40 CFR 55.12(f) prior to submitting this permit application.

3.2 EPA and ADEC Agency Permitting Roles

The Frontier Discoverer Exploratory Drilling Program will be an exploration project conducting exploratory oil and gas drilling operations (North American Industry Classification System [NAICS] code 211111 Crude Petroleum and Natural Gas Extraction) on SOI's oil and gas lease-holdings located on federal OCS waters on the Beaufort Sea. SOI's OCS lease blocks are located between longitude 141 degrees W to longitude 155 degrees W. SOI's lease holdings are located outside the jurisdiction of the state of Alaska's three mile seaward boundary but are within 25 miles of Alaska's seaward boundary. Therefore, the project is subject to the requirements of 40 CFR Part 55 with the U.S. EPA as the regulatory approval agency. 40 CFR 55.1 requires the EPA to review and approve the project pursuant to the part 55 requirements including the corresponding onshore area (COA) (Alaska) requirements in 40 CFR 55.14 and 18 AAC 50. ADEC has no direct regulatory authority over the review and approval of this application and thus will serve as an interested member of the public. The EPA may of course confer with ADEC with potential interpretation issues pertaining to the applicable COA regulatory requirements.

3.3 Synthetic Minor Source Permitting

SOI intends to operate (and permit) the Frontier Discoverer and its associated support vessels as a synthetic minor source that will not exceed 250 tons of any new source review regulated air contaminant per drilling site per year. The project's primary air contaminant is nitrogen oxides (NO₂) with lesser quantities of carbon monoxide (CO), small-diameter particulate matter (PM₁₀), volatile organic compounds (VOC), and sulfur dioxide (SO₂). SOI will seek federally enforceable requirements to ensure that the project retains a minor source permit status. It is SOI's intent that the ORL described in Section 2.3 above will satisfy the federal enforceability requirement.

3.4 Area Designation

The Outer Continental Shelf (OCS) permitting requirements of 40 CFR Part 55.14 require that a permit application address the Corresponding Onshore Area (COA) requirements, which for the Frontier Discoverer Exploratory Drilling Program project are the ADEC requirements for the Northern Alaska Intrastate Air Quality Control Region (AQCR) 9. This region is designated attainment or unclassifiable for all criteria pollutants pursuant to 40 CFR 81.302. This area is designated as a Prevention of Significant Deterioration (PSD) Class II Area per 18 AAC 50.015. There are no Class I areas within 300 kilometers of the project location. The nearest Class I area (Denali National Park) is located approximately 700 kilometers to the south of the project location.

3.5 State Requirements Applicable to OCS Sources

Pursuant to 40 CFR 55.14(e), the applicable state of Alaska (the COA) requirements has been promulgated by the EPA as being applicable to the Frontier Discoverer project. The following describes the Alaska Administrative Code (AAC) emissions standards and limitations of ADEC that are applicable to the Frontier Discoverer Exploratory Drilling Program's air emission sources. The relevant portions of ADEC's permit application forms have been completed and provided in Appendix C. The ambient air quality analysis, pursuant to 18 AAC 50.540(c)(2)(B) is presented in Section 4.

The following ADEC emissions standards and limitations apply to industrial processing and fuel burning equipment on the Frontier Discoverer drilling vessel:

- Visible emissions, excluding condensed water vapor, from each stationary IC engine and each boiler, may not reduce visibility through the exhaust effluent by greater than 20 percent averaged over any six consecutive minutes, per 18 AAC 50.055(a)(1).
- Particulate matter emitted from each stationary IC engine and each boiler may not exceed, per cubic foot of exhaust gas corrected to standard conditions and averaged over three hours, 0.05 grains, per 18 AAC 50.055(b)(1).
- Sulfur-compound emissions, expressed as sulfur dioxide, from each stationary IC engine and each boiler, may not exceed 500 ppm averaged over a period of three hours, per 18 AAC 50.055(c).

SOI proposes to limit the Frontier Discoverer Exploratory Drilling Program emissions to less than 250 tons per drill site per year by limiting the project's diesel fuel consumption by the owner requested limit (ORL), per 18 AAC 50.540(j), and described in Section 2.3.

3.6 Federal Requirements Applicable to OCS Sources

The federal requirements pursuant to 40 CFR 55.13 have been promulgated by the EPA as being applicable to the Frontier Discoverer project. This section addresses the requirements of New Source Performance Standards (NSPS), Prevention of Significant Deterioration (PSD), and Hazardous Air Pollutants (HAPs) pursuant to 40 CFR 55.13(c), (d) and (e).

New Source Performance Standards (NSPS): With the possible exception of NSPS Subpart CCCC Standards of Performance for Commercial and Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999, or for Which Modification or Reconstruction Is Commenced on or After June 1, 2001; the Frontier Discoverer drilling vessel and its associated support vessels are not subject to any 40 CFR Part 60 NSPS. The Frontier Discoverer Exploratory Drilling Program vessel incinerators due to their small size (less than 35 tons per day of municipal solid waste) are exempt from federal requirements aside from an initial notification to the EPA administrator and quarterly record-keeping of the waste material burned. 40 CFR 60.2020 (NSPS Subpart CCCC) requirements apply to the project incinerator(s) that commenced construction after November 30, 1999, whereas federal requirements 40 CFR 62.14525 apply to the project incinerator(s) that commenced construction before November 30, 1999.

Prevention of Significant Deterioration (PSD): The applicable potential emissions threshold under the PSD requirements of 40 CFR 52.21 for the construction of a new source is 250 tons per year for each pollutant. SOI proposes to limit the Frontier Discoverer Exploratory Drilling Program potential emissions to less than 250 tons per drill site per year (for each pollutant) so that the Frontier Discoverer drilling vessel and its associated support vessels are not subject to review under the PSD rules. Emission calculations are provided in Appendix B. The requested limitation on the project's fuel use is provided on ADEC permit forms in Appendix C and is discussed in Section 2.3 of this application.

National Emission Standards for Hazardous Air Pollutants (NESHAPs) and National Emission Standards for Hazardous Air Pollutants for Source Categories - Maximum Achievable Control Technology (MACT) Requirements: The Frontier Discoverer Exploratory Drilling Program and its combustion sources are not subject to a national emissions standard for hazardous air pollutants of 40 CFR Part 61 and are not subject to a national emissions standard for hazardous air pollutants for source categories under 40 CFR Part 63, subparts A, and C through to the end. The calculations provided in Appendix B show that the Frontier Discoverer Exploratory Drilling Program combined vessel fleet potential emissions of each hazardous air pollutant is less than 10 tons per year, and the aggregate of all hazardous air pollutant emissions is less than 25 tons per, and thus it is not a major source of HAPs and therefore not subject to the control technology determination requirements of 40 CFR 63 Subpart B.

SECTION 4 AMBIENT IMPACT ANALYSIS (DISPERSION MODELING)

This section describes the ambient standards to be addressed for the exploration drilling activities, the model selected for use in addressing these standards, and the selection of inputs to the model in a manner believed to be consistent with acceptable EPA and ADEC modeling methods.

The Outer Continental Shelf (OCS) permitting requirements of 40 CFR Part 55.14 require that a permit application address the Corresponding Onshore Area (COA) requirements, which for the project are the ADEC requirements for the Northern Alaska Intrastate Air Quality Control Region (AQCR) 9. This AQCR is unclassifiable/in attainment for all pollutants. In addition, there are no Class I areas within 300 kilometers of the project location.

Thus, expected impacts from the exploration drilling activities were evaluated in relation to the National Ambient Air Quality Standards (NAAQS) and Alaska Ambient Air Quality Standards (AAAQS). Because this project is a temporary minor source, it would not consume increment under ADEC's rules. Therefore, the impacts are not compared with the Class II PSD increments.

Emissions from the project will not exceed the 250-ton-per-year Prevention of Significant Deterioration (PSD) major source review threshold. However, because the project is considered a portable oil and gas operation by ADEC, a minor permit is required per ADEC Regulation 18 AAC 50.502(c)(2)(A). As a result, a National Ambient Air Quality Standards (NAAQS) modeling analysis for SO₂, NO_x, and PM₁₀ is required per ADEC Regulation 18 AAC 50.540(c)(2)(B). For the impact analysis, emissions from the stationary source (the Frontier Discoverer) and mobile sources (i.e., icebreakers, oil spill response vessels, and a re-supply vessel) were modeled for impact.

4.1 Source Characterization

SOI has defined the worst-case modeling impact scenario as the Frontier Discoverer drill rig operating at maximum emissions. During maximum Frontier Discoverer operations, impacts from the OSR fleet and the Jim Kilabuk re-supply vessel, both operating adjacent to the Frontier Discoverer, are considered. In addition, primary and secondary icebreaker impacts are also included. The icebreakers are assumed to operate at their maximum capacities in heavy ice (worst-case emissions), and their impacts are calculated at the Frontier Discoverer's point of maximum impact. The emissions from propulsion engines on the Frontier Discoverer and the Jim Kilabuk are not considered in the assessment, since these propulsion engines will be used very briefly to maneuver the Frontier Discoverer drill rig. The propulsion engines will not be operated concurrently with the drill rig and support vessels when they are operating at maximum emissions levels.

SOI has estimated the duration at a given drill site is expected to be less than 45 days. Even though the Frontier Discoverer Exploratory Drilling Program will be permitted as a minor source and does not trigger PSD requirements, the modeling analysis conservatively considers sources operating 24 hours per day and 45 days per year. These assumptions combined with the use of the conservative SCREEN3 model (which incorporates worst-case assumptions) are expected to greatly overestimate real-world impacts from the project.

Frontier Discoverer Drill Rig

For modeling, some sources on the Frontier Discoverer were merged together because of size and location considerations. Many identical sources/stacks are located near each other and were collocated so that single-source stack parameters were used with combined emissions. The locations of the collocated stacks were conservatively placed at the actual stack location nearest the ambient air boundary.

The following sources on the Frontier Discoverer were collocated: six main drilling engines (stack #1), two air compressors (stack #2), two HPP engines (stack #3), three diesel crane engines (stack #4), and two heat boilers (stack #5). Because stack parameters for the two cementing units are unknown at this time, the emissions from two cementing units (which are similar in size to the HPP engines) were modeled out of the HPP engine stack (stack #3). A logging winch emits to the atmosphere via a single stack (stack #6). These six stacks were considered as point sources in the modeling analysis.

The diesel crane engine stack emits to the atmosphere horizontally. This stack was modeled in accordance with ADEC's recommendations. ADEC's recommended adjustments provide for the retention of buoyancy while addressing the impediment to the vertical momentum of the release. The following procedure was utilized to model horizontally emitting stacks:

- Set the actual stack velocity (V_{actual}) to an adjusted stack exit velocity ($V_{adjusted}$) of 0.001 meters per second.
- To conserve volumetric flow, determine an adjusted stack diameter (D_{adjusted}) by adjusting the actual stack inside diameter (D_{actual}) to account for buoyancy of the plume by using the following equation:

$$D_{adjusted} = 31.6(D_{actual})(V_{actual})^{0.5}$$

• Use the adjusted parameters, V_{adjusted} and D_{adjusted} in the modeling analysis.

The physical characteristics of the stacks on the Frontier Discoverer are provided in Table 4. Photographs and diagrams of the Frontier Discoverer are provided in Appendix A.

Table 4: Frontier Discoverer Source Stack Parameters

	Model	Source	Vertical or	Releas	Release Ht. ¹		Release Ht. ¹ Stack Dia.		Dia.	Exit Temp.		Exit Vel.
Source Description	Source ID	Type	Horizontal?	(ft)	(m)	(ft)	(m)	(deg. F)	(deg. K)	(m/s)		
Drill Rig: Frontier Discoverer												
Stack #1: 6 Main Drilling Engines	MAINENGS	Point	vertical	42.1	12.83	1.15	0.35	437	498	63.3		
Stack #2: 2 Air Compressors	COMPENGS	Point	vertical	8.0	2.44	0.69	0.21	800	700	40.0		
Stack #3: 2 HPP Engines ²	HPPENGS	Point	vertical	8.0	2.44	0.60	0.18	800	700	40.0		
Stack #4: 2 Crane Engines A	DECKCRNS	Point	horizontal	45.0	13.72	117.95	35.95	750	672	0.001		
Stack #5: 2 Heat Boilers	HEATBOIL	Point	vertical	42.1	12.83	1.50	0.46	200	366	7.3		
Stack #6: 1 Logging Winch	LOGWNCH	Point	vertical	10.3	3.12	0.33	0.10	820	711	53.0		

^A Diameter and exit velocity is adjusted since stack emits horizontally.

Non-adjusted stack diameter is 0.83 feet (0.25 meters), and non-adjusted exit velocity is 20.1 m/sec.

¹ Above main deck that is approximately 4.57 meters (15 feet) above the water surface.

² Also includes emissions from two cementing units.

The configuration of the sources on the Frontier Discoverer deck is shown on Figure 2.

Given the configuration of the stacks and structures on the Frontier Discoverer, it is expected that the plumes will be down-washed and pulled into the wake of the Frontier Discoverer. In SCREEN3, the dimensions of buildings in proximity to the stacks are needed to simulate building downwash. For this analysis, the "building" length and width are assumed to be the length and width of the Frontier Discoverer. The building height for downwash is assumed to be 20 feet above main deck. This height accounts for miscellaneous structures and objects located at the middle of the ship near the stacks.

Frontier Discoverer Support Vessels

The OSR vessels assigned to the rig will stay very close to the rig at all times. Periodically, the workboats will do response exercises, but it is not expected that any of the OSR vessels will travel more than 2 miles away from the rig. To be conservative, the OSR vessels are considered adjacent to the drill rig in the modeling assessment. In addition, the Jim Kilabuk re-supply vessel is also assumed to be considered adjacent to the drill rig. For the Jim Kilabuk, emissions from the two main engines and a generator are considered for modeling. The emissions from the Bow Thruster Diesel engine (propulsion engine) are not considered in the assessment since the propulsions engines will be used very briefly to maneuver the Kilabuk near the drill rig. For the project, maximum emissions of any pollutant for the propulsion engines on the Jim Kilabuk will be approximately 1.2 tons of NO_x per year and less than 0.1 tons per year of either PM₁₀ or SO₂.

Figure 3 displays the configuration of the worst-case modeling scenario for the drill rig and associated support vessels.

Figure 3: Modeling Configuration for Drill Rig and Support Vessels

For the worst-case modeling scenario, the primary and secondary icebreakers are assumed to be operating in heavy ice, which results in maximum emissions from these vessels. The distance the icebreakers operate from the drill rig is variable based on the character of the ice, the drift rate of the ice, and the weather forecast/conditions. In general, the icebreakers will break ice directly upstream from the drill rig. The line directly upstream from the drill rig is called the drift line.

The primary icebreaker (Kapitan Dranitsyn) will range from approximately 5 km to 20 km upstream from the drill rig. The primary icebreaker will move back and forth perpendicular to the drift line approximately 5 km either side of the drift line to the rig. The secondary icebreaker will range from the buoy pattern of the drill rig up to 10 km upstream of the rig. The secondary icebreaker will move back and forth perpendicular to the drift line approximately 2.5 km either side of the drift line approximately 2.5 km either side of the drift line to the rig. Secondary ice management for the Frontier Discoverer will be performed by the Fennica/Nordica.

The icebreakers are constantly moving to break ice upstream of the drill rig. To account for the movement of the icebreakers, the sources were modeled as elevated area sources rather than point sources. Each icebreaker was initially modeled as a point source to account for mechanical and buoyant lift from the ship's stacks. The final plume rise for the icebreakers was determined, and the emissions from each icebreaker were then modeled as an elevated area source (based on the final plume heights) covering the ice management areas for each icebreaker.

For the support vessels, stack heights were estimated from photographs and ship diagrams. Other stack parameters were determined using ship-specific information, engineering judgment, and data for comparable sources. Emissions from each ship are assumed to be released to the atmosphere via a single stack.

The physical characteristics of the stacks on the support vessels are provided in Table 5. Photographs and diagrams of the support vessels are provided in Appendix A.

Table 5:	Support	Vessel	Source	Stack	Parameters
----------	---------	--------	--------	-------	------------

	Model Source	Source		Release Ht. ¹		Stack Dia.		Exit Temp.		Exit Vel.
Source Description	ID	Туре	Ship Type	(ft)	(m)	(ft)	(m)	(deg. F)	(deg. K)	(m/s)
Kapitan Dranitsyn ^{3, 4}	KAPITAN/KAP_BIG	Point/Area	Primary Icebreaker	115.0	35.05	1.05	0.32	482	523	41.5
Fennica/Nordica ^{3, 5}	FENNICA/FEN_SM	Point/Area	Secondary Icebreaker	105.0	32.00	0.87	0.27	572	573	36.0
Oil Response Ships - Discoverer ²	KILABUK	Point	Oil Spill Response Fleet	50.0	15.24	0.60	0.18	800	700	40.0
Jim Kilabuk - Discoverer	KILABUK	Point	Re-supply Ship	50.0	15.24	0.60	0.18	800	700	40.0

¹ Absolute height above water.

² Assume same stack parameters as the Jim Kilabuk re-supply ship.

³ These sources are constantly moving to break ice upstream of the drill rig. To account for movement of the vessels, the plume rise for each icebreaker was determined by modeling each ship as a point source. Then, the emissions for each icebreaker were modeled as an elevated area source (based on plume rise) covering the ice management area for each ship.

⁴ Kapitan Dranitsyn ice management activity covers 150,000,000 sq. meters; final plume rise used for area source release height is 67.7 meters.

⁵ Fennica/Nordica ice management activity covers 50,000,000 sq. meters; final plume rise used for area source release height is 60.9 meters.

4.2 Modeled Emissions

The modeling analysis conservatively considers all emission sources operating 24 hours per day and 45 days per year even though actual durations at a given drill site will be significantly less.

Tables 6, 7, and 8 present the modeled emissions for NO_x, PM₁₀, and SO₂, respectively.

	#	Opera	tions	Max. 1-Hour		Max. 24-Hour	Max. Annual
Source ID	Stacks	hr/day	hr/yr	(lb/hr)	(g/sec)	(g/sec)	(g/sec) ¹
Drill Rig: Frontier Discoverer							
Stack #1: 6 Main Drilling Engines	1	24	1,080	124.30	1.57E+01	1.57E+01	1.93E+00
Stack #2: 2 Air Compressors	1	24	1,080	6.58	8.29E-01	8.29E-01	1.02E-01
Stack #3: 2 HPP Engines ²	1	24	1,080	35.65	4.49E+00	4.49E+00	5.54E-01
Stack #4: 2 Diesel Crane Engines	1	24	1,080	22.63	2.85E+00	2.85E+00	3.52E-01
Stack #5: 2 Heat Boilers	1	24	1,080	3.20	4.04E-01	4.04E-01	4.98E-02
Stack #6: 1 Logging Winch	1	24	1,080	4.34	5.47E-01	5.47E-01	6.74E-02
Support Vessels: Frontier Disco Fleet	verer						
Kapitan Dranitsyn	1	24	1,080	699.77	8.82E+01	8.82E+01	1.09E+01
Fennica/Nordica	1	24	1,080	523.07	6.59E+01	6.59E+01	8.13E+00
Oil Response Ships - Discoverer	1	24	1,080	151.20	1.91E+01	1.91E+01	2.35E+00
Jim Kilabuk - Discoverer	1	24	1,080	181.85	2.29E+01	2.29E+01	2.82E+00

Table 6: Modeled NO_x Emissions

 1 Emission rate (in g/s) for annual periods is adjusted to account for a maximum of 45 days at each drill site.

² Also includes emissions from two cementing units.

Table 7: Modeled PM₁₀ Emissions

					Emissions		
	#	Operations		Max. 1-Hour		Max. 24-Hour	Max. Annual
Source ID	Stacks	hr/day	hr/yr	(lb/hr)	(g/sec)	(g∕sec)	(g/sec) 1
Drill Rig: Frontier Discoverer							
Stack #1: 6 Main Drilling Engines	1	24	1,080	3.91	4.92E-01	4.92E-01	6.07E-02
Stack #2: 2 Air Compressors	1	24	1,080	0.33	4.15E-02	4.15E-02	5.11E-03
Stack #3: 2 HPP Engines ²	1	24	1,080	2.53	3.19E-01	3.19E-01	3.93E-02
Stack #4: 2 Diesel Crane Engines	1	24	1,080	1.61	2.02E-01	2.02E-01	2.49E-02
Stack #5: 2 Heat Boilers	1	24	1,080	0.37	4.72E-02	4.72E-02	5.82E-03
Stack #6: 1 Logging Winch	1	24	1,080	0.31	3.88E-02	3.88E-02	4.78E-03
Support Vessels: Frontier Disco Fleet	verer						
Kapitan Dranitsyn	1	24	1,080	14.76	1.86+00	1.86E+00	2.29E-01
Fennica/Nordica	1	24	1,080	11.27	1.42E+00	1.42E+00	1.75E-01
Oil Response Ships - Discoverer	1	24	1,080	3.22	4.06E-01	4.06E-01	5.00E-02
Jim Kilabuk - Discoverer	1	24	1,080	3.53	4.45E-01	4.45E-01	5.48E-02

¹ Emission rate (in g/s) for annual periods is adjusted to account for a maximum of 45 days at each drill site

² Also includes emissions from two cementing units

					Emissions		
	#	Operations		Max. 1-Hour		Max. 24-Hour	Max. Annual
Source ID	Stacks	hr/day	hr/yr	(lb/hr)	(g/sec)	(g/sec)	(g/sec) ¹
Drill Rig: Frontier Discoverer							
Stack #1: 6 Main Drilling Engines	1	24	1,080	11.82	1.49E+00	1.49E+00	1.84E-01
Stack #2: 2 Air Compressors	1	24	1,080	1.54	1.94E-01	1.94E-01	2.39E-02
Stack #3: 2 HPP Engines ²	1	24	1,080	1.77	2.23E-01	2.23E-01	2.75E-02
Stack #4: 2 Diesel Crane Engines	1	24	1,080	1.12	1.41E-01	1.41E-01	1.74E-02
Stack #5: 2 Heat Boilers	1	24	1,080	0.44	5.49E-02	5.49E-02	6.77E-03
Stack #6: 1 Logging Winch	1	24	1,080	0.22	2.71E-02	2.71E-02	3.34E-03
Support Vessels: Frontier Discover	r er Fleet						
Kapitan Dranitsyn	1	24	1,080	45.32	5.71E+00	5.71E+00	7.04E-01
Fennica/Nordica	1	24	1,080	34.74	4.38E+00	4.38E+00	5.40E-01
Oil Response Ships - Discoverer	1	24	1,080	15.30	1.93E+00	1.93E+00	2.38E-01
Jim Kilabuk - Discoverer	1	24	1,080	11.52	1.45E+00	1.45E+00	1.79E-01

Table 8: Modeled SO₂ Emissions

¹ Emission rate (in g/s) for annual periods is adjusted to account for a maximum of 45 days at each drill site.

² Also includes emissions from two cementing units.

4.3 Model Selection

After research into the availability of meteorological data for use in modeling, it was determined that representative meteorological data meeting U.S. EPA's requirements is not available for the project location. This issue was discussed with both ADEC and the EPA. On March 30, 2006, the EPA approved the use of the SCREEN3 model for the project. SCREEN3 is a U.S. EPA-approved model, which incorporates worst-case assumptions. As a result, modeled impacts using SCREEN3 are expected to overestimate real-world impacts from the project.

For this analysis, the most recent version of the SCREEN3 model (version 96043) was used. SCREEN3 is a steady-state, single-source, Gaussian dispersion model developed to provide an easy-to-use method of obtaining pollutant concentration estimates. SCREEN3 is a U.S EPAapproved screening model for estimating impacts at receptors located in simple terrain and complex terrain due to emissions from simple sources. The model is capable of calculating downwind ground-level concentrations due to point, area, and volume sources. In addition, SCREEN3 incorporates algorithms for the simulation of aerodynamic downwash induced by buildings. The model utilizes a range of worst-case meteorological data rather than using sitespecific meteorological conditions.

4.4 Meteorological Data

For this analysis, SCREEN3's full array of screening meteorological data was used. Screening meteorological data are the meteorological categories listed in U.S. EPA's "SCREEN3 Model User's Guide" (EPA-454/B-95-004) and as shown in Table 9. A total of 36 wind directions, at 10-degree intervals, are used. Thus, the screening meteorological file contains all combinations of meteorological conditions and wind directions. This meteorological data considers theoretical worst-case conditions regardless if these conditions will actually occur at the project locations.

	Wind Speed (m/sec)												
Stability	1	1.5	2	2.5	3	3.5	4	4.5	5	8	10	15	20
А	*	*	*	*	*								
В	*	*	*	*	*	*	*	*	*				
С	*	*	*	*	*	*	*	*	*	*	*		
D	*	*	*	*	*	*	*	*	*	*	*	*	*
E	*	*	*	*	*	*	*	*	*				
F	*	*	*	*	*	*	*						

Table 9: Wind Speed and Stability Class Combinations Used by the SCREEN3 Model

Based on a review of the meteorological data in the vicinity of the project location, an ambient temperature of 273 K was utilized. This temperature is more representative of the project location and duration than SCREEN3's default ambient temperature of 293 K.

4.5 Background Concentrations

When comparing a project's impact to the ambient air quality standards, an ambient background concentration is needed. For the project, ADEC recommended ambient background concentrations from BP's Arctic North Slope Eastern Region (ANSER) monitoring program, which took place east of BP's Badami facility in 1999. The data is considered representative of the SOI project locations and has been reviewed and approved by ADEC. ADEC considers this data the best available regional data set for a North Slope project located 10 to 20 km or further offshore. Table 10 presents the background concentrations for use in the modeling analysis.

	Averaging	Background
Pollutant	Period	Concentration (µg/m ³)
NO ₂	Annual	3.0
PM10	24-hour	7.9
	Annual	1.8
SO ₂	3-hour	9.8
	24-hour	7.2
	Annual	2.6

Table 10:	Background	Concentrations
	Dackground	Concentrations

ADEC was also consulted regarding existing industrial sources in the vicinity of the project. Because of the remote offshore location of the project, impacts from other sources are anticipated to be insignificant and are not included in the modeling assessment.

4.6 Evaluation Methodology

The SCREEN3 model can only be used to predict maximum 1-hour concentrations from a single source. When screening models are utilized for multiple sources, it is necessary to model each source separately and then add maximum impacts from each model run to determine an overall impact value. Results utilizing this methodology are expected to be conservative since the maximum impacts from each modeled source (regardless of different impact locations at different times) are summed together for a total impact value from a facility.

Conversion factors, also referred to as persistence factors, are needed to convert maximum 1-hour values to other averaging periods of concern. Table 11 presents the U.S. EPA's recommended conversion factors for SCREEN3.

Table 11: Conversion Factors for Screen3 Modeling

	Desired Averaging Period								
Model Output	1-hr	3-hr	8-hr	24-hr	Month	Quarter	Annual		
Simple Terrain	1	0.9	0.7	0.4	0.18	0.13	0.08		

The maximum short-term emissions (i.e., maximum hourly and maximum daily emissions) from the project were compared to the short-term ambient air quality standards. Annual impacts consider the totality of emissions over a 45-day project duration. Because emissions used in the analysis are based on a 45-day operating period, the annual emissions from the project are distributed over 45 days (rather than 365) and a factor of 0.1233 (45 days / 365 days) is applied to annualize the subsequent impacts.

SCREEN3 modeling was performed using a methodology referred to as X/Q, which assumes that concentration impacts (X) are proportional to the emissions (Q) from a source. Under this approach, each collocated source was modeled with a 1 gram/second emission rate. The resulting X/Q impacts were converted to appropriate averaging times using the factors in Table 9 and then multiplied by the actual emission rate of each pollutant to determine a modeled impact.

Flat terrain and rural dispersion coefficients were used in the modeling analysis. For the SCREEN3 modeling analysis, it was assumed that the ambient air boundary for the Frontier Discoverer is a 500-meter safety exclusion zone measured from the side of the Frontier Discoverer. SOI expects to obtain a 500-meter radius Safety Exclusion Zone (SEZ) from the United States Coast Guard by March or April 2007. A copy of the SEZ Application will be submitted to EPA under a separate cover. SOI will implement institutional controls to maintain the SEZ. Such controls will include buoys marking the SEZ and anchor chains, and using shipboard and on-shore communication systems and support vessels to patrol the SEZ to keep unauthorized persons at a safe distance away from the Frontier Discoverer drilling vessel.

The calculations and modeled impacts associated with this modeling analysis are provided in Appendix E.

4.7 Modeling Results

Table 12 summarizes the results of the SCREEN3 modeling analysis. Based on the modeling analysis results in Table 12, the predicted impacts from the SOI project comply with the National Ambient Air Quality Standards.

Table 12: Modeling Analysis Results

	Averaging	(Concentration (µg	NAAQS			
Pollutant	Period	Max. Discoverer	Max. Vessels	Background	Total	(µg∕m³)	Comply?
NO ₂ A	Annual	19.5	18.4	3.0	40.9	100	Yes
PM10	24-hour	69.1	20.2	7.9	97.2	150	Yes
	Annual	1.7	0.5	1.8	4.0	50	Yes
SO_2	3-hour	163.1	179.0	9.8	352.0	1,300	Yes
	24-hour	72.5	79.6	7.2	159.3	365	Yes
	Annual	1.8	2.0	2.6	6.4	80	Yes
NO ₂ A PM ₁₀ SO ₂	Annual 24-hour Annual 3-hour 24-hour	19.5 69.1 1.7 163.1 72.5	18.4 20.2 0.5 179.0 79.6	3.0 7.9 1.8 9.8 7.2	40.9 97.2 4.0 352.0 159.3	100 150 50 1,300 365	Yes Yes Yes Yes Yes

^A Assume that all $NO_2 = NOx * 0.75$

APPENDIX A Drawings and Photographs

Frontier Discoverer

Kapitan Dranitsyn

Fennica/Nordica

Jim Kilabuk

Supporting Information – Frontier Discoverer

DRILL SHIP FRONTIER DISCOVERER

PARTICULARS	NAME	FRONTIER DISCOVERER
	FORMERLY	Discoverer 511
	REGISTRATION	Repub lic of Panama
	YEAR BUILT	Converted 1976
	DESIGN	Sonat Offshore Drilling Discoverer Class, Turret Moored w/ thrusters
	CLASSIFICATION	ABS A1, E, M, Drilling Unit AMS

þ	LENGTH	514.1′		156.7 m
RIN	BREADTH (mld)	70.9′		21.6 m
CIP	DEPTH (mld @ CL)	38.1′		11.6 m
LE DI	MAX HEIGHT ABOVE KEEL	273.0′		83.2 m
MENS	RKB TO SEA LEVEL	45.9´		14.0 m
ION	MOONPOOL (D)	22.0'		6.7 m
S	HELIDECK	74.0´x 65.5´		Rated for S-61
D	AT LOADLINE		26.9´	8.2m
R	TRANSIT DRAFT		26.3´	8.0m
AU	DISPLACEMENT FULL LOAD			19,885 mt

	ACCOMMODATION	120 Beds + 2 Hospital b	eds, all Air Conditioned
CAP,	VARIABLE LOAD		9,063 mt
	LIQUID MUD 100%	2,000 b b ls	318 m ³
	BULK MUD	6,400 f3	181 m ³
	BULK CEMENT	6,400 f3	181 m ³
ACIT	SACK STORAGE		4,250 f3
TIES	DRILL WATER (AFT PEAK INCL)	8,000 b b ls	1272 m ³
	POTABLE WATER	1,670 bbls	266 m ³
	FUEL	8,255 b b ls	1313 m ³
	HELI-FUEL		1000 gallons

꼰	MAIN POWER	6 x Caterpillar D-399 1325 HP
IG PO	POWER DISTRIBUTION	6 x Ross Hill 1600 SCR Modules rated at 1650 amps 750 VDC
VER	EMERGENCY POWER	1 X Caterpillar 3304 TD

0.P.	WATER DEPTH	Min : 125 ´ Actual : 1000 ´ Upgrade : 2,000 ´	Min : 38 m Actual : 305 m Upgrade : 610 m
	DRILLING DEPTH	20,000′	6096m
	TRANSIT SPEED		10.0 knots approximate

	LIFE BOATS	2 x 66 man Watercraft
MISC	LIFE RAFTS	Capacity for 141 persons
	CRANES	3 x Houston Systems, 25 tons
	SEWAGE PLANT	Demco WT-7000

	DERRICK	Pyramid 170' x 40' x 40' GNC 1,330,000 pounds
	DRAW WORKS	Ideco E2100, 2,000HP with 2 x GE752 electric motors
	AUXILIARY BRAKE	Baylor Model 7838
	CROWN BLOCK	Pyramid, 9 x 60" sheaves for 1-1/2" drill line rated to 1,330,000 pounds
	TRAVELING BLOCK	Continental Emsco MA60-6, 600 tons rating with 6 x 60" sheaves for 1-1/2" drill line
뎟	ноок	BJ 550 Dynaplex, 500 tons rating
	ROTARY TABLE	National C-495, 49-1/2", with GE752 electric motor
ING E	MOTION COMPENSATOR:	Houston Drilling Systems 20' stroke, (6.1m) rated to 400,000 lb s working capacity, 1,200,000 static capacity
[©]	TOP DRIVE	Varco TDS-3
IPN	DRILL PIPE HANDLING	Byron Jackson 3 arm racking system
IENT	MUD PUMPS	2 x Continental Emsco FA1600 each with 2 x GE 752 electric motors c/w 5 x 6 centrifugal charging pumps
	SCALPING SHAKERS	2 x Brandt Dual Tandem
	SHALE SHAKERS	4 x Derrick Model 48 Flo-line Cleaner
	DEGASSER	Swaco vacuum
	MUD CLEANERS	2 x Sweco 48 – 8 x 4" cones
	MANUAL DEGASSER	Upright type with 6" crown vent line
	INSTRUMENTATION	Martin Decker & Geolograph - 8 pens
Ţ		708 m ⁻ for bloth rig and client
JBU	PIPE RACK LOADING	5,370 kg/m ⁻
JLA		5° Grade S-135
RS		5" OD
	DRILL COLLARS	DC Dimensions : 9-½", 8", 6-½"
	DIVERTER	Regan KFDS
	DIVERTER BOP EQUIPMENT	Regan KFDS 2 x 18-3/" 10K Cameron Doub le U
	DIVERTER BOP EQUIPMENT	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 5K Hydril GL Annular
(0)	DIVERTER BOP EQUIPMENT	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 5K Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors
SUB	DIVERTER BOP EQUIPMENT	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 5K Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors 1 x 18-¾" Regan CR-1 5K Ball Joint
SUBSEA I	DIVERTER BOP EQUIPMENT BOP CONTROL	Regan KFDS 2 x 18-3/" 10K Cameron Doub le U 2 x 18-3/" 5K Hydril GL Annular 2 X 18-3/" Vetco H-4 Connectors 1 x 18-3/" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi
SUBSEA EQUIP	DIVERTER BOP EQUIPMENT BOP CONTROL C & K MANIFOLD	Regan KFDS 2 x 18-3⁄4" 10K Cameron Doub le U 2 x 18-3⁄4" 5K Hydril GL Annular 2 X 18-3⁄4" Vetco H-4 Connectors 1 x 18-3⁄4" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes
SUBSEA EQUIPMEI	DIVERTER BOP EQUIPMENT BOP CONTROL C & K MANIFOLD MARINE RISER	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 5K Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors 1 x 18-¾" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C
SUBSEA EQUIPMENT	DIVERTER BOP EQUIPMENT BOP CONTROL C & K MANIFOLD MARINE RISER	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 5K Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors 1 x 18-¾" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint
SUBSEA EQUIPMENT	DIVERTER BOP EQUIPMENT BOP CONTROL C & K MANIFOLD MARINE RISER RISER TENSIONING	Regan KFDS 2 x 18-3⁄4" 10K Cameron Doub le U 2 x 18-3⁄4" 5K Hydril GL Annular 2 X 18-3⁄4" Vetco H-4 Connectors 1 x 18-3⁄4" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel
SUBSEA EQUIPMENT	DIVERTER BOP EQUIPMENT BOP CONTROL C & K MANIFOLD MARINE RISER RISER TENSIONING G/L TENSIONING	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 5K Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors 1 x 18-¾" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel
SUBSEA EQUIPMENT	DIVERTER BOP EQUIPMENT BOP CONTROL C & K MANIFOLD MARINE RISER RISER TENSIONING G/L TENSIONING	Regan KFDS 2 x 18-3/" 10K Cameron Doub le U 2 x 18-3/" 10K Cameron Doub le U 2 x 18-3/" KHydril GL Annular 2 X 18-3/" Kegan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel UBE Mitrub inbit UEC Marine Diggel 7 200 HD @125 RDM
SUBSEA EQUIPMENT	DIVERTER BOP EQUIPMENT BOP CONTROL C & K MANIFOLD MARINE RISER RISER TENSIONING G/L TENSIONING PROPULSION ENGINE: MODEINC PATTEEN	Regan KFDS 2 x 18-3/" 10K Cameron Doub le U 2 x 18-3/" Vetco H-4 Connectors 1 x 18-3/" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel UBE Mitsub ishi UEC Marine Diesel 7,200 HP @135 RPM P point from mid ching rotation turget
SUBSEA EQUIPMENT	DIVERTER BOP EQUIPMENT BOP CONTROL C & K MANIFOLD C & K MANIFOLD MARINE RISER RISER TENSIONING G/L TENSIONING PROPULSION ENGINE: MOORING PATTERN	Regan KFDS 2 x 18-3/" 10K Cameron Doub le U 2 x 18-3/" 10K Cameron Doub le U 2 x 18-3/" 5K Hydril GL Annular 2 X 18-3/" Vetco H-4 Connectors 1 x 18-3/" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel UBE Mitsub ishi UEC Marine Diesel 7,200 HP @135 RPM 8 point from mid-ships rotating turret Eventre Model 00 HTD 150
SUBSEA EQUIPMENT PROPU	DIVERTER BOP EQUIPMENT BOP CONTROL BOP CONTROL C & K MANIFOLD MARINE RISER RISER TENSIONING G/L TENSIONING G/L TENSIONING PROPULSION ENGINE: MOORING PATTERN MOORING WINCHES	Regan KFDS 2 x 18-3/" 10K Cameron Doub le U 2 x 18-3/" 10K Cameron Doub le U 2 x 18-3/" 10K Cameron Doub le U 2 x 18-3/" SK Hydril GL Annular 2 X 18-3/" SK Hydril GL Annular 2 X 18-3/" Vetco H-4 Connectors 1 x 18-3/" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel UBE Mitsub ishi UEC Marine Diesel 7,200 HP @135 RPM 8 point from mid-ships rotating turret Smatco Model 90-HTD-150 Chain - Wire comb instinn
SUBSEA EQUIPMENT PROPULSIO	DIVERTER BOP EQUIPMENT BOP CONTROL BOP CONTROL C & K MANIFOLD C & K MANIFOLD MARINE RISER RISER TENSIONING G/L TENSIONING G/L TENSIONING PROPULSION ENGINE: MOORING PATTERN MOORING PATTERN MOORING WINCHES MOORING LINES	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 5K Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors 1 x 18-¾" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel UBE Mitsub ishi UEC Marine Diesel 7,200 HP @ 135 RPM 8 point from mid-ships rotating turret Smatco Model 90-HTD-150 Chain - Wire comb ination
SUBSEA EQUIPMENT PROPULSION	DIVERTER BOP EQUIPMENT BOP CONTROL C & K MANIFOLD C & K MANIFOLD MARINE RISER RISER TENSIONING G/L TENSIONING PROPULSION ENGINE: MOORING PATTERN MOORING WINCHES MOORING LINES ANCHOR CHAIN	Regan KFDS 2 x 18-3/2" 10K Cameron Double U 2 x 18-3/2" SK Hydril GL Annular 2 X 18-3/2" Vetco H-4 Connectors 1 x 18-3/2" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel UBE Mitsub ishi UEC Marine Diesel 7,200 HP @ 135 RPM 8 point from mid-ships rotating turret Smatco Model 90-HTD-150 Chain - Wire comb ination 8 each Approx. 1,000' x 2-1/2" Grade 3 Approx. 2,500' x 2.3/4" & x 26 MPC
SUBSEA EQUIPMENT PROPULSION AND	DIVERTER BOP EQUIPMENT BOP CONTROL BOP CONTROL C & K MANIFOLD MARINE RISER RISER TENSIONING G/L TENSIONING G/L TENSIONING PROPULSION ENGINE: MOORING PATTERN MOORING PATTERN MOORING LINES ANCHOR CHAIN WIRE LINES EAIBL EADS	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 5K Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors 1 x 18-¾" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50° line travel 4 x Houston Systems each with 16,000 pounds capacity – 40° line travel UBE Mitsub ishi UEC Marine Diesel 7,200 HP @ 135 RPM 8 point from mid-ships rotating turret Smatco Model 90-HTD-150 Chain - Wire comb ination 8 each Approx. 1,000' x 2-1/2" Grade 3 Approx. 2,500' x 2-3/4" 6 x 36 IWRC 8 y Skadit wartically mounted
SUBSEA EQUIPMENT PROPULSION AND MO	DIVERTER BOP EQUIPMENT BOP CONTROL BOP CONTROL C & K MANIFOLD C & K MANIFOLD MARINE RISER RISER TENSIONING G/L TENSIONING G/L TENSIONING BORING PATTERN MOORING PATTERN MOORING LINES ANCHOR CHAIN VIRE LINES FAIRLEADS	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 5K Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors 1 x 18-¾" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel UBE Mitsub ishi UEC Marine Diesel 7,200 HP @135 RPM 8 point from mid-ships rotating turret Smatco Model 90-HTD-150 Chain - Wire comb ination 8 each Approx. 1,000' x 2-1/2" Grade 3 Approx. 2,500' x 2-3/4" 6 x 36 IWRC 8 x Skagit, vertically mounted 8 x LWIT 30.000 pounds
SUBSEA EQUIPMENT PROPULSION AND MOOF	DIVERTER BOP EQUIPMENT BOP CONTROL BOP CONTROL C & K MANIFOLD C & K MANIFOLD MARINE RISER MARINE RISER MARINE RISER PROPULSION ING FUENSIONING CL TENSIONING MOORING PATTERN MOORING PATTERN MOORING UINCHES MOORING LINES ANCHOR CHAIN WIRE LINES FAIRLEADS ANCHORS	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" 5K Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors 1 x 18-¾" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel UBE Mitsub ishi UEC Marine Diesel 7,200 HP @135 RPM 8 point from mid-ships rotating turret Smatco Model 90-HTD-150 Chain - Wire comb ination 8 each Approx. 1,000' x 2-1/2" Grade 3 Approx. 2,500' x 2-3/4" 6 x 36 IWRC 8 x Skagit, vertically mounted 8 x LWT 30,000 pounds
SUBSEA EQUIPMENT PROPULSION AND MOORING	DIVERTER BOP EQUIPMENT BOP CONTROL BOP CONTROL C & K MANIFOLD C & K MANIFOLD MARINE RISER MARINE RISER RISER TENSIONING G/L TENSIONING G/L TENSIONING G/L TENSIONING MOORING PATTERN MOORING PATTERN MOORING LINES ANCHOR CHAIN WIRE LINES FAIRLEADS ANCHORS BUOYS	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" SK Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors 1 x 18-¾" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50° line travel UBE Mitsub ishi UEC Marine Diesel 7,200 HP @135 RPM 8 point from mid-ships rotating turret Smatco Model 90-HTD-150 Chain - Wire comb ination 8 each Approx. 1,000' x 2-1/2" Grade 3 Approx. 2,500' x 2-3/4" 6 x 36 IWRC 8 x Skagit, vertically mounted 8 x LWT 30,000 pounds 8
SUBSEA EQUIPMENT PROPULSION AND MOORING	DIVERTER BOP EQUIPMENT BOP EQUIPMENT BOP CONTROL BOP CONTROL C & K MANIFOLD C & K MANIFOLD MARINE RISER MARINE RISER MARINE RISER MARINE RISER PROPULSION ENGINE: MOORING PATTERN MOORING PATTERN MOORING PATTERN MOORING UINCHES MOORING LINES ANCHOR CHAIN WIRE LINES FAIRLEADS ANCHORS BUOYS PENDENT WIRE	Regan KFDS 2 x 18-¾" 10K Cameron Doub le U 2 x 18-¾" SK Hydril GL Annular 2 X 18-¾" Vetco H-4 Connectors 1 x 18-¾" Regan CR-1 5K Ball Joint Stewart & Stevenson control unit, 400 gallon, 2 x triplex pumps 20 GPM at 3,000 psi Cameron 3-1/8" with 2 x manual and 1 x Sweco auto chokes National and Vetco MR6C 1 x Vetco Telescopic Joint, and 1 x National Telescopic Joint 8 x Houston Systems each with 80,000 pounds capacity – 50' line travel UBE Mitsub ishi UEC Marine Diesel 7,200 HP @135 RPM 8 point from mid-ships rotating turret Smatco Model 90-HTD-150 Chain - Wire comb ination 8 acach Approx. 1,000' x 2-1/2" Grade 3 Approx. 2,500' x 2-3/4" 6 x 36 IWRC 8 x Skagit, vertically mounted 8 x LWT 30,000 pounds 8 2-¼", 6 x 36 per water depth req uirement

Supporting Information - Kapitan Dranitsyn

Description of the Vessel

"KAPITAN DRANITSYN"

1. General

- a) Owner Name: JS Murmansk Shipping Company, Russia
- b) Owner Address: 15, Kominterna street, 183038, Murmansk, Russia
- c) Operator Name: as above
- d) Operator Address: as above
- e) Vessel Name : "Kapitan Dranitsyn"
- f) Builder: "Wartsila" shipyard, Helsinki, Finland
- g) Where Built:
- h) Year Built: 1980
- i) Type: Icebreaker/passenger
- j) Classification: Icebreaker (КМ ЛЛ7), passenger class
- k) Classification Society: RUSSIAN MARITIME REGISTER OF SHIPPING
- I) Flag : RUSSIA
- m) Date of next scheduled docking: may 2006

2. Performance

- a) Certified Bollard Pull: 120 tn
- b) Maximum Speed (non-towing in fair weather): about 18,5 knt
- c) Fuel Consumption at Maximum Speed: IFO30- 103 mt + MGO- 7 mt
- d) Service Speed on two engines (non-towing in fair weather): abt 12,0 knt
- e) Fuel Consumption at Service Speed: IFO30- 28,0 mt + MGO- 7 mt
- f) Fuel Consumption for 1 engine (at 70% load): n/a
- g) Fuel Consumption at port: IFO30- 5 mt + MGO- 3 mt
- h) Approx. Towing/Heavy ice condition (engine power at 100%): 110 mt + 7 mt
- Types & Grades of fuel used: IFO30/RMA10 and MDO/DMB All according to ISO 8217 1996(E). To ensure work of ME and ADG when starting and stopping and to ensure work of emergency DG aboard motor vessel the supplies of diesel oil (gasoil DMA) are provided in amount of 5% of fuel oil demand without of daily consumption extension.
- j) Maximum Endurance (days): 29

- k) LOA: 132,4 m
- l) Beam: 26,5 m
- m) Draft: 8,5 m
- n) Keel to Masthead: 48,7 m
- o) Masthead Height: n/a
- p) Deadweight: 4515 t
- q) Liquid Cargo Capacity: none
- r) Fuel Delivery Capacity: 2950 mt IFO30/ 600 mt MDO
- s) Cargo Pump Type: Nil
- t) Cargo Pumping Rate & Pressure: Nil
- u) Fuel Pump Type: ACF 100 3 N3F x 2
- v) Fuel Pumping Rate & Pressure: 72m³ / 3-4 kg/cm²
- w) Fresh Water Capacity: 466 mt
- x) Fresh Water Pump Type: KLHP 70
- y) Fresh Water Pumping Rate & Pressure: 50 m³/2,5 kg/cm²
- z) Oil Spill Recovery Tank Capacity: 81.00 m³ + 352 m³ + 78,9 m³
- aa) Cargo Deck Area (aft): Helicopter hangar with L/B/H 11.5/5.5/4.0 mtrs
- bb) Cargo Deck strength (helicopter deck): 2,5 mt/sq.m
- cc) Icebreaking capability: 1,5 m no jam ice in the continuous mode.

3. Machinery

- a) BHP of Main Engines: 6x4140 Hp
- b) Engine Builder: WARTSILA ZULTZER
- c) Number of Engines & type: 6 Pcs Type 9ZL 40/48
- d) Generators: HSSUL and YSPTL
- e) Generator Builder: STROMBERG
- f) Number of Generators & type: 6 pcs HSSUL 18/1057 D1; 5 pcs YSPTL 11/554 B16
- g) Generator Capacity: HSSUL 3800 Kwt; YSPTL 1025 Kwt
- h) Bow Thruster Manufacturer: nil
- i) Bow thruster rating (tons): nil
- j) Stern Thruster Manufacturer: nil
- k) Stern thruster rating (tons): nil
- I) Propellers / Rudders type: 3 fixed pitch screws, 4,3 m in diameter with 4 steel vanes of hardened steel. Max. speed of rotation 185 o\min.
- m) Propellers / Rudders Manufacturer: Russia Finland
- Number & Pressure rating of air compressors: 2 pcs WP 370-30 kg/cm²; 1 pc EK-16-2 8 kg/cm²; 1 pc WP 25L100 35 kg/cm²
- o) Fuel Oil Metering system Type & Manufacturer: KONTRAM
- p) Pusher bow capable: nil
- q) Water Makers Type of system installed: D 5U x 2 pcs; Osmos RORO 3560 1 pcs
- r) Water Maker Manufacturer: Russia; Germany
- s) Total Daily Water Making Capacity: 40 m³
- t) Daily water consumption: 10-20 m³

4. Towing & Anchor Handling Equipment

- a) Stern Roller Dimension: Diam. 500 mm
- b) Stern Roller SWL: 120 tn.
- c) c) Towing Winch Manufacturer: RAUMA-REPOLA HV 60E-1 J
- d) Winch Locations: stern towing winch accommodation
- e) Drum Capacity: 500 m.
- f) Brake Holding Capacity: 130 tn.
- g) Bollard Pull: 120 tn
- h) Towing Wires Construction: standard seal-Warrington
- i) Towing Wire Diameters: 60 mm

- j) Wire End Termination Details: LOOP
- k) Spare Towing Wire Details: 240 m 60 mm
- I) Tugger Winch Manufacturer: Nil
- m) Winch Locations: stern
- n) Drum Capacity: pls clarify
- o) SWL: pls clarify
- p) Work Wires Construction: pls clarify
- q) Work Wires Diameter: pls clarify
- r) Work Wires & Termination Details: pls clarify
- s) Spare Working wire details: pls clarify
- t) Other Anchor Handling Equipment Details: Anchor "Holla" 3 pcs (1 spare)
- u) Sharks Jaws SWL: pls clarify
- v) Sharks Jaws Maximum Operational diameter: 63 mm pls clarify
- w) Sharks Jaws Minimum Operational diameter: 63 mm pls clarify
- x) Sharks Jaws Remote Operating Location: Forecast pls clarify
- y) Towing Pins SWL: pls clarify
- z) Towing Pins Maximum Operational diameter: pls clarify
- aa) Towing Pins Minimum Operational diameter: pls clarify
- bb) Remote Operating Location: Stern towing room

5. Deck Crane for Cargo Hose Handling - NIL

- a) Crane SWL: bow port 2,4 tn: bow strbd 3,0 tn: helicopter deck port 10 tn
- b) Crane reach & SWL Limitation details: bow 2,8-12,5 m: helicopter deck 3,2-16 m
- c) Crane Location: 2 bow port/strbd: 1 helicopter deck port

6. Communication & Navigational Equipment

- a) Single Joystick control & automatic heading control installed: No
- b) GMDSS system installed: Yes
- c) GMDSS System details and supporting equipment information: Skanti Combibridge 9250
- d) TRP-9000 HF SSB: DSC-9000 MF/HF DSC: DSC 3000 VHF DSC
- e) VHF marine band radio installed: Yes
- f) VHF Locations: bridre port/strbd
- g) Radar installation details: bridge port/strbd
- h) Radar operating band: X-band S-band
- i) Radar Maximum Range: 96 nm
- j) Identification Radar transponder Installed: No
- k) Radar operating bands: VHF see point g)
- I) Echo Sounder Installed: Yes
- m) Gyrocompass installed: Yes
- n) Gyro Type: KURS-4 x 2 pcs: VEGA 1 pcs
- o) Number of independent systems: (Gyros ?) 3
- p) Can Vessel send & receive email massages: Yes
- q) Can vessel send & receive fax massage: Yes
- r) Has the vessel got an auto pilot installation: Yes
- s) Details of Electronic Navigational Equipment Installed: GPS FURUNO GP 80: MAGNAVOX MX 200: SHIPMATE RS 5300

7. Fire Fighting Equipment

- a) Class (FiFi 1, FiFi 2 or FiFi 3):
- b) Number of Fixed Fire Monitors: 2 pcs
- c) Location of Fixed fire monitors: Bridge, watch room

- d) Number of portable fire monitors: NIL
- e) Foam tank Capacity: 7,5 cub.m
- f) Engine room fire fighting system details: CO2 2790 kg

8. Accommodation Details

- a) Crew + staff Berths: 72
- b) Normal Total Complement: ?
- c) Passenger Berths: 120
- d) Total persons on board: 192

9. Gallery

- a) Freezer Space: 124 cub. m
- b) Cooler Room Space: 353 cub. m

10. Pollution Response Materials and Equipment

- a) Oil Dispersant Type: none
- b) Oil Spill Dispersant tank capacity: none
- c) Spray Equipment: none
- d) Spray Booms: none
- e) Skimmer Units: none
- f) Pumps: none
- g) Manifolds: none
- h) Nozzles: none

11. Miscellaneous

- a) Rescue & Stand by capability for 24-hour continuous operations: Yes
- b) Oil spill drip tray and oil containment system installed to prevent pollution during hose breaking operations: No
- c) Location and details of oil spill containment system for hose breaking operations: no
- d) Addition storage space available 500M of floating oil spill recovery boom and skimmer units: No
- e) Crew trained and capable of deployment of the oil spill recovery boom in 10 minutes: No
- f) Vessel capable of supporting Diving and ROV maintenance work from the support vessel: No
- g) Brief details of diving support and ROV capability: NIL
- h) Vessel bunker consumption figures at sea provided of the absence of coming current and good weather conditions, i.e. winds maximum Beaufort force 3 (max 12 knots) and not exceeding Douglass Sea state 2.

ALL ABOVE DETAILS GIVEN FOR GOOD ORDER AND IN ACCORDANCE WITH BUILDING PLANS BUT ABOUT AND WOG.

12. Vessel Management and Operation

Vessel shall be managed and operated during the Charter Term By:

JSC MURMANSK SHIPPING COMPANY (DU), acting as manager of state owned icebreakers, registered at 15 Kominterna Street, Murmansk, 183038, Russia.

Supporting Information – Fennica/Nordica

OFFSHORE

Powerful, high-tech, multipurpose vessels for global underwater oil field construction

Designed for the management, maintenance and service of offshore oil wells, the 97-metre Botnica is a multipurpose vessel specialised in marine construction and icebreaking, as are the 116-metre vessels Fennica and Nordica. They are equipped with diesel-electric propulsion systems and their innovative combination of capabilities, based on extensive design and engineering work, facilitates their use in both arctic and tropical conditions. All three of these multipurpose vessels are highly advanced, powerful and extremely well designed and built.

Unique technology for demanding conditions

These vessels are ideal for offshore operations. The working deck is about 1,000 m², making it exceptionally large and level for ships of this length. The deck was designed for fast equipment changes. Depending on the ship, such equipment may range from simple deck cranes to a 160-tonne pedestal active heave compensated crane, or from deepwater installation equipment to pipe-laying systems, underwater machinery control or the towing and installation of large pipelines.

With their 15,000 kW power output and 230-tonne bollard pull, the Nordica and the Fennica are ideal for seabed ploughing and towing, and they are also fully equipped for anchor-handling operations. The ships' main engine and generator solution makes it possible to perform heavy-duty maintenance tasks without affecting their operating ability.

Both the Fennica and the Nordica are also equipped with a stern roller.

Accurate, safe and highly suitable

The Botnica's moon pool and the large size of its working deck make this ship highly suitable for a variety of offshore operations. Different types of special tools and structures can be installed on the working deck. The attributes of the Botnica, a class 3 DP ship, are in keeping with the strict rules and stipulations demanded in oil well management, as well as the requirements on oil fields set by the Norwegian Maritime Directorate.

The multipurpose icebreakers are equipped with Kongsberg Simrad's Dynamic Positioning (DP) system, which has five independent control units operating their main propellers and three bow thrusters. Even in a sector in which ocean vessels equipped with DP systems are a normal sight, these vessels have performed their tasks exceptionally well in terms of manoeuvrability and accuracy. Their unusual asymmetrical and spacious navigation bridge was designed with an eye to the requirements placed on the ship's multiple applications, both on the open sea and in icebreaking and towing operations.

The vessels have a separate deck for the clients' use, with cabins and offices and a separate data network. The high quality facilities accommodate a total of 45-47 guests, depending on the ship.

Fennica Dimensions Lenath 116.00 m 26.00 m Beam Draught 8.40 m max. Built 1993 Max. speed 16 knots Class DnV + 1A1 - Tug Supply Vessel - SF - EO -Icebreaker polar - 10, Dynpos, AUTR, Helideck Dynpos Simrad ADP 702 Accommodation 82 persons 24 cabins for client use (47 persons) Client's offices: 1 operation centre on 4th bridge deck, 1 x 20 m² office Helideck Superpuma or similar Deck Working deck area 1090 m² Anchor handling/winch Aquamaster TAW 3000/3000 E Machinerv Main engines 2 x Wärtsilä Diesel, Vasa 16V 32, each 6000 kW 2 x Wärtsilä Diesel, Vasa 12V 32, each 4500 kW Generators ABB Strömberg Drives 2 x HSG 1120 MP8, power 8.314 kVA, Volt 6.3 KV, speed750 rpm 2 x HSG 900 LR8, power 6.235 kVA, Volt 6.3 KV, speed 750 rpm Propellers 2 x HSSOL 18/1654, output 7.500 kW each, ABB Strömberg Drives 2x Aquamater-Rauma US ARC 1, 7500 kW each, FP propellers, variable RPM Bow thrusters 3 x Brunvoll FV-80 LTC-2250, VP propellers 1.050 kW each Bollard pull 234 tons

Crane(s) (optional)

30 tons/38 metre jib Stb 15 tons Port A-frame 120 tons **Navigation Equipment** Robertson ECDIS Navigation System Doppler speed log Loran C GPS Fiber optic gyros Differential GPS Gyro. Navintra Ecdis Direction finder Echo sounder Facsimile recorder **Communication Equipment** 1 x Skanti TRP 8400D MF/HF SSB, including all GMDSS requirements 1 x Watch receiver 1 x Aero VHF. Helicopter communication 6 x VHF

1 x Navtex receiver

- 1 x Inmarsat B satellite comm. system
- VSAT online satellite comm. system

3 x UHF walkie-talkie

- 3 x VHF walkie-talkie
- 2 x Freefloat EPRIB, 121,5 and 406 MHz 2 x Distress transponders, 96 Hz
- Call signal OJAD

Nordica

Length

Draught

Beam

Dimensions

116.00 m 26.00 m 8.40 m max. 1994 16 knots

Built Max. speed Class

DnV + 1A1 – Tug Supply Vessel – SF – EO – Icebreaker polar - 10, Dynpos, AUTR, Helideck Dynpos

Simrad ADP 702

Accommodation

82 persons

24 cabins for client use (47 persons) Client's offices: 1 operation centre on 4th bridge deck, 1 x 20 m² office

Helideck Superpuma or similar

Deck Working deck area 1090 m² Anchor handling/towing winch

Aquamaster TAW 3000/3000 E Machinery

Main engines 2 x Wärtsilä Diesel, Vasa 16V 32, each 6000 kW 2 x Wärtsilä Diesel Vasa 12V 32 each 4500 kW Generators ABB Strömberg Drives 2 x HSG 1120 MP8, power 8.314 kVA, Volt 6.3 KV, speed750 rpm 2 x HSG 900 LR8, power 6.235 kVA, Volt 6.3 KV, speed 750 rpm Propellers 2 x HSSOL 18/1654, output 7.500 kW each, ABB Strömberg Drives 2x Aquamater-Rauma US ARC 1, 7500 kW each, FP propellers, variable RPM Bow thrusters 3 x Brunvoll FV-80 LTC-2250, VP propellers 1.050 kW each Bollard pull 234 tons

Main crane (optic	onal)
Lifting capacity	160 T/9 m
	30 T/32 m
Main winch	Active Heave
	Compensated
	Constant Tension
Heave amplitude	+ 3,5 m double part
	+ 7 m single part
Operating depth	500 m-160 T (double part)
	1000 m–80 T (single part)
Aux winch	10 T, 33 m,
	Constant Tension
Tugger winches	2 x 4 T Constant Tension
Port	15 tons
A-frame (optiona	l) 120 tons
Navigation Equip	ment lavigation System

speed log opp Loran C GPS Fiber Optic Gyros Differential GPS Gyro. Direction finder Echo sounder Facsimile recorder

Communication Equipment

1 x Skanti TRP 8400D MF/HF SSB, including all GMDSS requirements 1 x Watch receiver

1 x Aero VHF. Helicopter communication 6 x VHF 1 x Navtex receiver

- 1 x Inmarsat B satellite comm. system VSAT online satellite comm. system 3 x UHF walkie-talkie
- 3 x VHF walkie-talkie
- 2 x Freefloat EPRIB, 121,5 and 406 MHz
- 2 x Distress transponders, 96 Hz
- OJAE Call signal

Botnica

Dimensions

Length 96.70 m Beam 24.00 m Draught 7.2 to 8.5 m 1998 Built 15 knots Max. speed Class DnV + 1A1 - Supply Vessel - SF - EO -Icebreaker Ice - 10, Dynpos AUTRO, RPS NMD Mobile offshore Units, DP UNIT, with equipment class 3 Dynpos

Simrad SDP22 + SDP12 backup 2 x HIPAP combined SSBL/MULBL hydroacoustic system 2 x Seatex DPS DGPS combined GPS/Glonass

Accommodation

72 persons 24 cabins for client use (45 pers.) 2 x client's office

Helideck

Superpuma or similar

Deck

Working deck area 1000 m²

Machinerv

Main engines 12 x Caterpillar 3512B, 1257 kW, 1500 rpm Main generators 6 x ABB-AMG 560, 2850 kVA, 3,3 kV 3 N, 50 Hz Emergency generators

1 x Caterpillar 3406, 200 kW, 400 V, 3 N,

50 Hz

Main propulsion Stern 2 x 5000 kW Azipod, FP

Bow thrusters

3 x Brunvol tunnel, variable pitch á 1150 kW Bollard pull 117 tons

Crane(s) (optional)

1 x Hydralift, 160 tons 1 x 15 tons

Main cranes

160 T/9 m Lifting capacity 30 T/32 m Main winch Active Heave Compensated

Constant Tension Heave amplitude + 4 m double part + 8 m single part Operating Depth 550 m-160 T (double part) 1100 m- 80 (single part)

Aux winch 10 T, 33 m, **Constant Tension**

6.5 x 6.5 metres

Moonpool Navigation and communication equipment GMDSS Inmarsat B VSAT online satellite comm. system Call signal OJAK

Shipping Enterprise FI-00380 Helsinki, Finland Phone +358 30 620 7000, fax +358 30 620 7030 e-mail: shippino@finstachin fi e-mail: shipping@finstaship.fi www.finstaship.fi

GDV Maritime AS

Brygga Næringssenter Vikaveien 31, N-4817 His, Norway Phone +47 3701 2260, fax +47 3701 2862 e-mail: maritime@gdv.no www.gdv.no

APPENDIX B Emission Calculations

N				PROJECT T	ITI E·		BY∙	
				Frontier		oror	י ח	loung
AIR SCIENCES INC.				PROJECT NO:			PAGE 1 OF 3	
Control of New York, Ne			~	1	ou-15		SHEET 1	
	CALC	ULATION	5	SUBJECT:	-		DATE:	
BINNES FURTION				Emissio	ns Sum	mary	12/2 ⁻	1/2006
Discoverer Rig and Associated Vessels								
EMISSIONS SUMMARY @ EXPECTED		Λ	Ye	arly Emissi	ons at a	iny loca	ition	
			topo	tono	topo	voc	502	
Rig / Vessel								
Discoverer Rig			51.8	0.7	1.7	0.9	4.7	
Kapitan Dranitsyn			107.6	37.1	3.4	7.3	7.1	
Fennica/Nordica			80.5	2.9	1.7	2.8	5.4	
Jim Kilabuk (resupply vessel)			1.2	0.3	0.0	0.1	0.1	
Discoverer's OSR Fleet			3.9	1.0	0.1	0.8	0.4	
			245.0	47.9	7.0	11.8	17.7	
Each Source								
Discoverer Rig			Ye	arly Emissi	ons at a	iny loca	ition	
	Rated Cap	acity	NOx	CO	PM10	VOC	SO2	
		•	tons	tons	tons	tons	tons	
Drilling Engine Cat. 399	1.282	Hp	7.51	0.83	0.24	0.07	0.71	
Drilling Engine Cat. 399	1 282	Hn	7 51	0.83	0.24	0.07	0.71	
Drilling Engine Cat. 300	1 292	Цn	7.46	0.82	0.22	0.07	0.71	
Drilling Engine Cat. 399	1,202	цр Цр	7.40	0.02	0.20	0.07	0.71	
Drilling Engine Cat. 399	1,202	Πμ	7.40	0.02	0.23	0.07	0.71	
Drilling Engine Cat. 399	1,282	нр	7.40	0.82	0.23	0.07	0.71	
Drilling Engine Cat. 399	1,282	нр	7.46	0.82	0.23	0.07	0.71	
Prop. Engine Mit. 60EC65	7,063	Нр	3.73	0.85	0.06	0.11	0.24	
Emergency Generator Cat. 3304	131	Нр						
Air Compressor	500	Нр	0.094	0.082	0.005	0.094	0.022	
Air Compressor	500	Нр	0.039	0.035	0.002	0.039	0.009	
Air Compressor	500	Hp						
HPP Engine	250	Hp	0.093	0.02	0.007	0.008	0.005	
HPP Engine	250	нр	0.093	0.02	0.007	0.008	0.005	
Port Fwd Deck Crane Cat. D343	365	Hp	0.88	0.19	0.06	0.07	0.04	
Stbd Fwd Deck Crane Cat. D343	365	Hp	0.88	0.19	0.06	0.07	0.04	
Cementing Unit Engine 1	325	Hn	0.15	0.02	0.01	0.01	0.01	
	325	нр Но	0.15	0.03	0.01	0.01	0.01	
Logging Winch Detroit 471	323	пр Цр	0.10	0.03	0.01	0.01	0.01	
	140	Πμ	0.18	0.04	0.01	0.01	0.01	
Well Log Back Genset, Detroit 471	120	Нр						
Heat Boiler	7.97	mmBtu	0.332	0.128	0.039	0.002	0.045	
Heat Boiler	7.97	mmBtu	0.332	0.128	0.039	0.002	0.045	
			51.81	6.68	1.71	0.85	4.74	

A				PROJECT T Frontie	ITLE: r Discov	verer	BY: D. ነ	′oung
In Complete Inic				PROJECT NO:			PAGE 2 C	OF 3
IR SCIENCES INC.			-	1	80-15		SHEET 1	
	CALC	ULATION	S	SUBJECT:			DATE:	
DIMPER • PERTIAND				Emissio	ns Sum	mary	12/22	2/2006
Discoverer Rig and Associated Ve	ssels - Each Sou	rce, con	ntinued					
Kapitan Dranitsyn			Yea	arly Emissi	ons at a	iny loca	tion	
	Rated Cap	acity	NOx	CO	PM10	VOC	SO2	
		•	tons	tons	tons	tons	tons	
Main Engine	4.140	Нр	23.45	5.37	0.39	0.69	1.5	
Main Engine	4 140	Hn	23 45	5.37	0.39	0.69	1.5	
Main Engine	4 140	Hn	23.45	5 37	0.00	0.00	1.0	
Main Engine	4,140	l Ip	20. 1 0	1 1 5	0.00	0.03	0.22	
Main Engine	4,140	пр	5.02	1.15	0.00	0.15	0.32	
Main Engine	4,140	нр	5.02	1.15	0.08	0.15	0.32	
Main Engine	4,140	Нр	5.02	1.15	0.08	0.15	0.32	
Auxiliary Engine	1,050	Hp	6.45	1.48	0.11	0.19	0.41	
Auxiliary Engine	1.050	Ηp	6.45	1.48	0.11	0.19	0.41	
Auxiliary Engine	1 050	Hn	6 4 5	1 48	0 11	0.19	0.41	
	1,000	Цр	1 27	0.21	0.11	0.10	0.11	
	1,050	пр	1.57	0.51	0.02	0.04	0.09	
Auxiliary Engine	1,050	Нр						
Diesel Compressor	1,380	Нр						
Diesel Compressor	1,380	Нр						
Emergency Generator	438	Нр						
Heat Boiler	18	mmBtu	1.33	0.33	0.22	0.04	0.25	
Heat Boiler	18	mmBtu						
Incinerator	0.077	ton/hr	0 12	12 47	1 46	4 16	0.1	
	0.011	toriaria	107.58	37.11	3.44	7.33	7.13	
Fennica/Nordica			Yea	arly Emissi	ons at a	iny loca	tion	
	Rated Cap	acity	NOx	CO	PM10	VOC	SO2	
			tons	tons	tons	tons	tons	
Main Engine	7,884	Hp	18.86	0.66	0.4	0.66	1.25	
Main Engine	7.884	Hp	21.69	0.75	0.46	0.75	1.43	
Main Engine	5,913	Hp	23.43	0.82	0.5	0.82	1.55	
Main Engine	5 013	Hn	16 27	0.52	0.34	0.57	1 08	
	710	цр	10.27	0.57	0.04	0.57	1.00	
Emorgonou Constator	/ 10	пр Пр						
Emergency Generator	300	пр		_				
Heat Boiler	4.44	mmBtu	0.164	0.041	0.027	0.005	0.031	
Heat Boiler	4.44	mmBtu	0.077	0.019	0.013	0.002	0.015	
Incinerator		N/A						
			80.49	2.86	1.74	2.81	5.36	
			80.49	2.86	1.74	2.81	5.36	

				PROJECT TI	TLE:	oror	BY:	(0)100
A					DISCOV	erer		
AIR SCIENCES INC.			PROJECT NO:				PAGE 3 C	JF 3
			s		00-10			
DENVIR - POSTANO	UALO(0	Emissio	ns Sum	marv	12/21	/2006
PS/MARKA PROPOSITION				Liniooloi	lo oum	mary	12/21	12000
Discoverer Rig and Associated Vessels -	Each Sou	rce, con	tinued					
Jim Kilabuk (resupply vessel)			Yea	arly Emissio	ons at a	ny loca	tion	
	Rated Cap	acity	NOx	CO	PM10	VOC	SO2	
			tons	tons	tons	tons	tons	
Main Engine EMD V20 645	3,600	Нр	0.52	0.12	0.01	0.02	0.03	
Main Engine EMD V20 645	3,600	Нр	0.52	0.12	0.01	0.02	0.03	
Generator, Cat. D3406	292	Нр	0.14	0.03	0.01	0.01	0.01	
Generator, Cat. D3406	292	Нр						
HPP, Cat. D343	300	Hp						
Bow Thruster Cat. D343	300	Hp	0.056	0.012	0.004	0.005	0.003	
		F	1 24	0.28	0.03	0.06	0.07	
Discoverer's OSR Fleet			Ye	arlv Emissio	ons at a	nv loca	tion	
	Rated Cap	acitv	NOx	CO	PM10	VOC	SO2	
			tons	tons	tons	tons	tons	
Engine 1 on Pt. Barrow tug	1.502	Нр	0.34	0.19	0.01	0.34	0.05	
Engine 2 on Pt. Barrow tug	1 502	Hn	0.34	0.19	0.01	0.34	0.05	
Generator 1 on Pt. Barrow	150	Hn	1.21	0.23	0.03	0.02	0.1	
Emergency generator on Pt. Barrow	150	Hn		0.20	0.00	0.01	••••	
Kvichak 47' skimming vessel	700	Hn	0 1 1 1	0 007	0.003	0.005	0.012	
Kvichak 47' skimming vessel	700	Hn	0.111	0.007	0.000	0.005	0.012	
Kvichak 3/ work boat #3	300	пр Но	0.111	0.007	0.003	0.003	0.012	
Kvichak 34 work boat #3	300	цр Пр	0.034	0.001	0.001	0.001	0.005	
Kvichak 34 work boat #4	200	цр Цр	0.034	0.001	0.001	0.001	0.005	
Kvichak 34 work boat #4	300	Πp	0.034	0.001	0.001	0.001	0.005	
Kvichak 34 Work boat #4	300	нр	0.034	0.001	0.001	0.001	0.005	
Kvichak 34 Work boat #5	300	нр	0.034	0.001	0.001	0.001	0.005	
Kvichak 34 Work boat #5	300	нр	0.034	0.001	0.001	0.001	0.005	
KVIChak 34 Work boat #6	300	нр	0.034	0.001	0.001	0.001	0.005	
Kvichak 34' work boat #6	300	Нр	0.034	0.001	0.001	0.001	0.005	
Engine 1 on tug for supply barge	1,500	Нр	0.77	0.18	0.01	0.02	0.05	
Engine 2 on tug for supply barge	1,500	Нр	0.77	0.18	0.01	0.02	0.05	
			3.92	0.99	0.08	0.76	0.36	

¥	PROJECT TITLE:	BY:
	Frontier Discoverer	D. Young
	PROJECT NO:	PAGE 1 OF 1
AIR SCIENCES INC.	180-15	SHEET 2
CALCULATIONS		
	Fuel Use Summary	12/21/2006
Drill Rig and Vessel Diesel Fuel Use Summary		
Year 2007, 2008	8, or 2009	
Rig/Vessel	gallons cu meter	
DISCOVERER RIG	357,743 1,354	
KAPITAN DRANITSYN	587,867 2,225	
FENNICA/NORDICA (2007-2009)	458,345 1,735	
JIM KILABUK	5,046 19	
Discoverer's OSR Fleet	23,800 90	
	1,432,801 5,424	

			PROJECT TITLE:		BY:
			Frontier	Discoverer	D. Young
			PROJECT NO:		PAGE 1 OF 3
AIR SCIENCES INC.			18	0-15	SHEET 3
	CALCUL	ATIONS	SUBJECT:		DATE:
III NY IR - PORTAGE	_		Fuel Use & O	perating Hours	12/21/2006
					•
Fuel Use & Operating Hours					
Discoverer Rig			Equivalent	Fuel Use*	
-	Rated Capac	city	Operating		
			Hours	Gallons	
Drilling Engine Cat. 399	1,282 ⊦	łp	725	47,490	-
Drilling Engine Cat. 399	1,282 ⊦	łp	725	47,490	
Drilling Engine Cat. 399	1,282 ⊦	łp	720	47,163	
Drilling Engine Cat. 399	1,282 ⊦	łp	720	47,163	
Drilling Engine Cat. 399	1,282 ⊦	łp	720	47,163	
Drilling Engine Cat. 399	1,282 ⊦	łp	720	47,163	
Prop. Engine Mit. 6UEC65	7,063 ⊦	lp	44	15,879	
Emergency Generator Cat. 3304	131 H	Ip			
Air Compressor	500 H	Ip	57	1,456	
Air Compressor	500 H	Ip	24	613	
Air Compressor	500 H	łp			
HPP Engine	250 F	łp	24	307	
HPP Engine	250 F	Ip	24	307	
Port Fwd Deck Crane Cat. D343	365 ⊦	lp di	155	2,891	
Stbd Fwd Deck Crane Cat. D343	365 ⊦	Ip	155	2,891	
Cementing Unit Engine 1	325 ⊦	Ip	30	498	
Cementing Unit Engine 2	325 H	i Ip	30	498	
Logging Winch Detroit 471	140 H	In	84	601	
Well Log Back Genset, Detroit 471	120 H	-p lp			
Heat Boiler	7.97 n	nmBtu	414	24.085	
Heat Boiler	7.97 n	nmBtu	414	24,085	
				357 743	=
				001,140	

*Based on unit capacity, operating hours and diesel fuel heat content of 137,000 mmBtu/gal (AP42). Additionally for an engine the average brake-specific fuel consumption value of 7,000 btu/hp-hr (AP42) was used.

		PROJECT TITLE:		BY:
A.		Frontier [Discoverer	D. Young
		PROJECT NO:		PAGE 2 OF 3
CIENCES INC.		180	0-15	SHEET 3
	CALCULATIONS	SUBJECT:		DATE:
FER + 200714018		Fuel Use & O	perating Hours	12/21/2006
Use & Operating Hours - continued		E av de vala ant	Evel Use*	
Kapitan Dranitsyn	Dated Canacity	Equivalent	Fuel Use"	
	Rated Capacity	Operating	Callana	
Main Engine	4 140 Hp	HOUIS	Gallons	-
Main Engine	4,140 Hp	472	99,844	
Main Engine	4,140 Hp	472	99,844	
Main Engine	4,140 Hp	472	99,844	
	4,140 Hp	101	21,305	
Main Engine	4,140 Hp	101	21,365	
Main Engine	4,140 Hp	101	21,365	
Auxiliary Engine	1,050 Hp	512	27,469	
Auxiliary Engine	1,050 Hp	512	27,469	
Auxiliary Engine	1,050 Hp	512	27,469	
Auxiliary Engine	1,050 Hp	109	5,848	
Auxiliary Engine	1.050 Hp		- / -	
Diesel Compressor	1 380 Hp			
Diesel Compressor	1 380 Hp			
Emergency Generator	1,000 HP 128 Hn			
	10 mmBtu	1 035	135 085	
		1,055	100,800	
		4 090		
Incinerator	0.077 ton/nr	1,080		=
			587,587	
Fennica/Nordica		Equivalent	Fuel Use*	
	Rated Capacity	Operating		
		Hours	Gallons	
Main Engine	7.884 Hp	253	101,917	-
Main Engine	7.884 Hp	291	117.224	
Main Engine	5,913 Hp	419	126 590	
Main Engine Main Fridine	5,913 Hp	291	87 918	
Auxiliary Engine	710 Hn	201	01,010	
	200 Llp			
		540	40 700	
Heat Boller		518	16,788	
Heat Boiler	4.44 mmBtu	244	7,908	
Incinerator	N/A			=
			458,345	

			PROJECT TITLE:		BY:
			Frontier D	Jiscoverer	D. Young
			PROJECT NO:		PAGE 3 OF 3
AIR SCIENCES INC.			180	-15	SHEET 3
2012 C.C. Marada D. Barriera and a consister	CAI	LCULATIONS	SUBJECT:		DATE:
# 3 0 Y F B + 2 X82 LAN #			Fuel Use & Op	perating Hours	12/21/2006
					+
Fuel Use & Operating Hours - continued					
Jim Kilabuk (resupply vessel)			Equivalent	Fuel Use*	
	Rated Cap	acity	Operating	1 40. 000	
I	1.0.02.2.7	uony	Hours	Gallons	
Main Engine EMD V20 645	3.600	Hn	12	2.207	-
Main Engine EMD V20 645	3.600	Hn	12	2.207	
Generator. Cat. D3406	292	Нр	30	448	
Generator, Cat. D3406	292	Нр		-	
HPP. Cat. D343	300	Hn			
Bow Thruster Cat. D343	300	Но	12	184	
		· · P		5 046	=
				0,0-10	
Discoverer's OSR Fleet			Equivalent	Fuel Use*	
	Rated Cap	acity	Operating		
	Tuica cap	doity	Hours	Gallons	
Engine 1 on Pt. Barrow tug	1.502	Hn	43	3.300	-
Engine 2 on Pt. Barrow tug	1.502	Hn	43	3,300	
Generator 1 on Pt. Barrow	150	Hn	827	6.338	
Emergency generator on Pt. Barrow	150	Hn		-,	
Kvichak 47' skimming vessel	700	Hn	22	787	
Kvichak 47' skimming vessel	700	пр Чл	22	787	
Kvichak 34' work hoat #3	300	Hn	22	337	
Kvichak 34' work boat #3	300	цр	22	337	
Kvichak 34' work boat #3	300	пр Цл	22	337	
Kvichak 34 Work boat #4	300	пр	22	337	
Kvichak 34 work boat #4	300	пр	22	227	
Kvichak 34 work boat #5	300	пр	22	337	
Kvichak 34 work boat #5	300	пр	22	227	
Kvichak 34 work boat #6	300	пр	22	227	
Engine 1 on tug for supply barge	1 500	пр	42	2 206	
Engine 2 on tug for supply barge	1,500	пр	40	3,∠90 3,206	
Engine 2 on lug for supply barge	1,500	нр	43	3,290	=
				23,800	

*Based on unit capacity, operating hours and diesel fuel heat content of 137,000 mmBtu/gal (AP42). Additionally for an engine the average brake-specific fuel consumption value of 7,000 btu/hp-hr (AP42) was used.

A				PROJECT T	ITLE:		BY:	
A				Fron	tier Discov	verer	D. Y	oung
his features has				PROJECT N	0:		PAGE 1	OF 3
AIR SCIENCES INC.					180-15		SHEET 4	
		CA	LCULATIONS	SUBJECT:			DATE:	
				Emiss	ion Factor	s (EF)	12/21/	/2006
Emission Factors (EF)								
Discoverer Rig		rating		NOx	CO	PM10	VOC	SO2
		unit	EF category		(lb/	hp-hr or lb/i	mmBtu)	
Drilling Engine Cat. 399	1,282	Нр	Discoverer Cat. D399 (adj.)	0.01616	0.00178	0.000508	0.0001526	0.0015371
Drilling Engine Cat. 399	1,282	Нр	Discoverer Cat. D399 (adj.)	0.01616	0.00178	0.000508	0.0001526	0.0015371
Drilling Engine Cat. 399	1,282	Нр	Discoverer Cat. D399 (adj.)	0.01616	0.00178	0.000508	0.0001526	0.0015371
Drilling Engine Cat. 399	1,282	Нр	Discoverer Cat. D399 (adj.)	0.01616	0.00178	0.000508	0.0001526	0.0015371
Drilling Engine Cat. 399	1,282	Нр	Discoverer Cat. D399 (adj.)	0.01616	0.00178	0.000508	0.0001526	0.0015371
Drilling Engine Cat. 399	1,282	Нр	Discoverer Cat. D399 (adj.)	0.01616	0.00178	0.000508	0.0001526	0.0015371
Prop. Engine Mit. 6UEC65	7,063	Нр	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Emergency Generator Cat. 3304	131	Нр	ICE <=600 hp AP42					
Air Compressor	500	Hp	Air compressors	0.00658	0.00575	0.000329	0.00658	0.0015371
Air Compressor	500	Hp	Air compressors	0.00658	0.00575	0.000329	0.00658	0.0015371
Air Compressor	500	Нр	Air compressors					
HPP Engine	250	Hp	ICF <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0 0015371
HPP Engine	250	Hn	ICF <=600 hp AP42	0.031	0 00668	0.0022	0.00251	0.0015371
Port Fwd Deck Crane Cat. D343	365	Hn	ICE <= 600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Stbd Fwd Deck Crane Cat. D343	365	Hn	ICE <= 600 hp AP42	0.031	0.000000	0.0022	0.00251	0.0015371
Competing Unit Engine 1	325	нр Нп	ICE <= 600 hp A1 + 2	0.001	0.000000	0.0022	0.00251	0.0015371
Comparting Unit Engine 2	325	цр Цп	$ICE <= 600 \text{ hp } \Delta P42$	0.001	0.000000	0.0022	0.00251	0.0015371
Logging Winch Detroit 471	140	пр Пр	CE <= 600 hp AI +2	0.001	0.00000	0.0022	0.00251	0.0015371
Wall Log Pack Conset Detroit 471	120	пр Чл	ICE ~= 600 hp AP/2	0.001	0.00000	0.0022	0.00201	0.0013371
Well Log Dack Gensel, Detroit 47 1	7.07	nµ mptu	Dellar on Dissoveror	0.201	0.0774	0 0225	0.00141	0.02726
Heat Boller	7.97	miniBlu	Boller on Discoverer	0.201	0.0774	0.0235	0.00141	0.02730
Heat Boller	1.91	mmBtu	Boiler on Discoverer	0.201	0.0774	0.0235	0.00141	0.02730

			PROJECT T	ITLE:		BY:	
A			Fro	ntier Discove	erer	 D Y	'ouna
			PROJECT N	0.	0.01	PAGE 2	OF 3
AIR SCIENCES INC.			I NOULUI N	180-15		SHEFT 4	01 0
	c	ALCULATIONS	SUBJECT	100 10			
ALL STATE AND ADDRESS AND ADDRESS ADDR			Emis	sion Factors	(FF)	12/22	2/2006
			2		(=.)		2000
Emission Factors (EF) - continued							
Kapitan Dranitsyn	rating		NOx	со	PM10	VOC	SO2
	unit	EF category		(lb/hp	o-hr or lb/m	mBtu)	
Main Engine	4,140 Hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Main Engine	4,140 Hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Main Engine	4,140 Hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Main Engine	4.140 Hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Main Engine	4 140 Hp	ICE >600 hp AP42	0.024	0.0055	0 000401	0 000705	0.0015371
Main Engine	4 140 Hp	ICE >600 hp AP42	0.024	0.0055	0 000401	0 000705	0.0015371
	1,110 Hp	ICE > 600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
	1,050 Hp	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
	1,050 Hp	ICE >600 hp AB42	0.024	0.0055	0.000401	0.000705	0.0015371
Auxiliary Engine	1,050 Hp	ICE > 000 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Auxiliary Engine	1,050 Hp	ICE >000 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Auxiliary Engine	1,050 Hp	ICE >600 np AP42					
Diesel Compressor	1,380 Hp	ICE >600 hp AP42					
Diesel Compressor	1,380 Hp	ICE >600 hp AP42					
Emergency Generator	438 Hp	ICE <=600 hp AP42					
Heat Boiler	18 mmBtu	Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Heat Boiler	18 mmBtu	Boiler <100 mmBtu AP42					
Incinerator	0.077 ton/hr	Shipboard incinerator. AP42	3	300	35	100	2.5
Fennica/Nordica	rating		NOx	CO	PM10	VOC	SO2
	unit	EF category		(lb/hp	o-hr or lb/m	nmBtu)	
Main Engine	7,884 Hp	Fennica/Nordica main engines	0.01891	0.000658	0.000401	0.000658	0.0012502
Main Engine	7,884 Hp	Fennica/Nordica main engines	0.01891	0.000658	0.000401	0.000658	0.0012502
Main Engine	5,913 Hp	Fennica/Nordica main engines	0.01891	0.000658	0.000401	0.000658	0.0012502
Main Engine	5,913 Hp	Fennica/Nordica main engines	0.01891	0.000658	0.000401	0.000658	0.0012502
Auxiliary Engine	710 Hp	ICE >600 hp AP42					
Emergency Generator	300 Hp	ICE <=600 hp AP42					
Heat Boiler	4 44 mmBtu	Boiler <100 mmBtu AP42	0 143	0.0357	0.0236	0 00397	0.02736
Heat Boiler	4 44 mmBtu	Boiler <100 mmBtu AP42	0.143	0.0357	0.0236	0.00397	0.02736
Incinerator	+ ΠΠΒια N/Δ	Not Applicable	0.140	0.0007	0.0200	0.00007	0.02700
incinciator	19/74	Not Applicable					

				PROJECT T	TLE:		BY:	
				Fror	ntier Discov	erer	D. Y	'ouna
				PROJECT N	0:		PAGE 3	OF 3
AIR SCIENCES INC.					180-15	ľ	SHEET 4	
		C	ALCULATIONS	SUBJECT:			DATE:	
An act of a constrained				Emiss	sion Factors	; (EF)	12/22	/2006
Emission Factors (EF) - continued								
Jim Kilabuk (resupply vessel)		rating		NOx	со	PM10	VOC	SO2
		unit	EF category		(lb/hj	o-hr or lb/m	mBtu)	
Main Engine EMD V20 645	3,600	Нр	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Main Engine EMD V20 645	3,600	Нр	ICE >600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Generator, Cat. D3406	292	Hp	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Generator, Cat. D3406	292	Hp	ICE <=600 hp AP42					
HPP, Cat. D343	300	Hp	ICE <=600 hp AP42					
Bow Thruster Cat. D343	300	Нр	ICE <=600 hp AP42	0.031	0.00668	0.0022	0.00251	0.0015371
Discoverer's OSR Fleet		rating		NOx	CO	PM10	VOC	SO2
		unit	EF category		(lb/h	o-hr or lb/m	mBtu)	
Engine 1 on Pt. Barrow tug	1,502	Hp	Pt Barrow Tug main engines	0.0105	0.00575	0.000329	0.0105	0.0015371
Engine 2 on Pt. Barrow tug	1,502	Hp	Pt Barrow Tug main engines	0.0105	0.00575	0.000329	0.0105	0.0015371
Generator 1 on Pt. Barrow	150	Hp	Pt. Barrow Tug generators	0.0195	0.00366	0.000414	0.000387	0.0015371
Emergency generator on Pt. Barrow	150	Нр	Pt. Barrow Tug generators					
Kvichak 47' skimming vessel	700	Hp	Kvic. 47' vessel engine	0.0144	0.00097	0.000401	0.000705	0.0015371
Kvichak 47' skimming vessel	700	Η̈́ρ	Kvic, 47' vessel engine	0.0144	0.00097	0.000401	0.000705	0.0015371
Kvichak 34' work boat #3	300	Hp	Kvic, 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #3	300	Hp	Kvic, 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #4	300	Нр	Kvic, 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #4	300	Нр	Kvic, 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #5	300	Нр	Kvic, 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #5	300	Hp	Kvic 34' vessel engine	0.01024	0.000171	0 000169	0.000342	0.0015371
Kvichak 34' work boat #6	300	Hn	Kvic 34' vessel engine	0.01024	0.000171	0.000169	0.000342	0.0015371
Kvichak 34' work boat #6	300	Hn	Kvic 34' vessel engine	0.01021	0.000171	0.000169	0.000342	0.0015371
Engine 1 on tug for supply barge	1 500	Hn	ICE >600 bn $AP42$	0.01021	0.0055	0.000401	0.000705	0.0015371
Engine 2 on tug for supply barge	1,500	Hp	ICE > 600 hp AP42	0.024	0.0055	0.000401	0.000705	0.0015371
Light 2 of tag for supply barge	1,000	Πp		0.024	0.0000	0.000401	0.000700	0.0010071

				PROJECT TI	ΓLE:		BY:	
A			l	Fro	ntier Discov	verer	D. Young	J
			l	PROJECT NO	D:		PAGE 1 0	OF 3
AIR SCIENCES INC.			I		180-15		SHEET 5	
	CAL	CULATI	ONS	SUBJECT:			DATE:	
bywrii + rokliasii				Hour	ly Emission	Rate	12/21/2006	ô
Hourly Emissions								
Discoverer Rig	Rated Capa	city	NOx	СО	PM10	VOC	SO2	1
č			lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	
Drilling Engine Cat. 399	1,282 F	ЧÞ	20.71712	2.28196	0.651256	0.1956332	1.9705622	1
Drilling Engine Cat. 399	1,282 F	Hp	20.71712	2.28196	0.651256	0.1956332	1.9705622	1
Drilling Engine Cat. 399	1,282 F	Чр	20.71712	2.28196	0.651256	0.1956332	1.9705622	ļ
Drilling Engine Cat. 399	1,282 F	Hp	20.71712	2.28196	0.651256	0.1956332	1.9705622	ļ
Drilling Engine Cat. 399	1,282 F	Hp	20.71712	2.28196	0.651256	0.1956332	1.9705622	l
Drilling Engine Cat. 399	1,282 ŀ	Hp	20.71712	2.28196	0.651256	0.1956332	1.9705622	1
Prop. Engine Mit. 6UEC65	7,063 ŀ	Чр	169.512	38.8465	2.832263	4.979415	10.8565373	l
Emergency Generator Cat. 3304	131 F	Чр						1
Air Compressor	500 F	Чр	3.29	2.875	0.1645	3.29	0.76855	l
Air Compressor	500 F	Чр	3.29	2.875	0.1645	3.29	0.76855	
Air Compressor	500 F	Чp						
HPP Engine	250 F	Чр	7.75	1.67	0.55	0.6275	0.384275	
HPP Engine	250 F	Чp	7.75	1.67	0.55	0.6275	0.384275	
Port Fwd Deck Crane Cat. D343	365 F	Чp	11.315	2.4382	0.803	0.91615	0.5610415	
Stbd Fwd Deck Crane Cat. D343	365 F	Чp	11.315	2.4382	0.803	0.91615	0.5610415	
Cementing Unit Engine 1	325 F	Чp	10.075	2.171	0.715	0.81575	0.4995575	
Cementing Unit Engine 2	325 F	Чp	10.075	2.171	0.715	0.81575	0.4995575	
Logging Winch Detroit 471	140 F	Чp	4.34	0.9352	0.308	0.3514	0.215194	
Well Log Back Genset, Detroit 471	120 F	Чp						
Heat Boiler	7.97 r	nmBtu	1.60197	0.616878	0.187295	0.0112377	0.2180592	
Heat Boiler	7.97 r	nmBtu	1.60197	0.616878	0.187295	0.0112377	0.2180592	

			PROJECT TI	(I F·		BY
			Fro	ntier Discov	verer	
			PROJECT NC).	0101	PAGE 2 OF 3
AIR SCIENCES INC.						SHEET 5
	CALCULATIO	ONS	SUBJECT:			DATE:
DINVIL POPLAND			Emis	sion Factor	s (EF)	12/21/2006
					//	
Hourly Emissions - continued						
Kapitan Dranitsyn	Rated Capacity	NOx	со	PM10	VOC	SO2
		lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
Main Engine	4,140 Hp	99.36	22.77	1.66014	2.9187	6.363594
Main Engine	4,140 Hp	99.36	22.77	1.66014	2.9187	6.363594
Main Engine	4,140 Hp	99.36	22.77	1.66014	2.9187	6.363594
Main Engine	4,140 Hp	99.36	22.77	1.66014	2.9187	6.363594
Main Engine	4,140 Hp	99.36	22.77	1.66014	2.9187	6.363594
Main Engine	4,140 Hp	99.36	22.77	1.66014	2.9187	6.363594
Auxiliary Engine	1.050 Hp	25.2	5.775	0.42105	0.74025	1.613955
Auxiliary Engine	1.050 Hp	25.2	5,775	0 42105	0 74025	1 613955
Auxiliary Engine	1.050 Hp	25.2	5 775	0 42105	0 74025	1 613955
Auviliany Engine	1.050 Hp	25.2	5 775	0.42105	0.74025	1 613955
Auxiliary Engine	1.050 Hp	20.2	0.110	0.72100	0.1-1020	1.010000
Diasal Compressor	1,000 Hp 1,380 Hp					
Diesel Compressor	1,000 Hp					
	1,380 Hp					
Emergency Generator	438 mp	0.574	0.0400	0 40 40	0.074.40	0.40040
Heat Boller		2.574	0.6426	0.4248	0.07140	0.49248
Heat Boiler	18 mmBtu					
Incinerator	0.077 ton/hr	0.231	23.1	2.695	1.1	0.1925
Fennica/Nordica	Rated Capacity	NOx	со	PM10	VOC	SO2
		lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
Main Engine	7,884 Hp	149.08644	5.187672	3.161484	5.187672	9.8565768
Main Engine	7.884 Hp	149.08644	5.187672	3.161484	5.187672	9.8565768
Main Engine	5.913 Hp	111.81483	3.890754	2.371113	3.890754	7.3924326
Main Engine	5.913 Hp	111 81483	3 890754	2 371113	3 890754	7 3924326
Auxiliary Engine	710 Hp	111.01100	0.000101	2.07 1110	0.000101	1.0021020
Emergency Generator	300 Hp					
Heat Boiler	4.44 mmBtu	0 63/02	0 158508	0 104784	0.0176268	0 121/78/
Heat Boiler	4.44 mmBtu	0.00492	0.150500	0.104704	0.0176260	0.1214704
		0.03492	0.156506	0.104704	0.0170208	0.1214704

				PROJECT TI	ΓLE:		BY:
				Fro	ntier Discov	erer	D. Young
Area and a second se				PROJECT NO	D:		PAGE 3 OF 3
AIR SCIENCES INC.					180-15		SHEET 5
	C/	ALCULA	TIONS	SUBJECT:			DATE:
DR MVFR + DIRTLAND				Emis	sion Factors	s (EF)	12/21/2006
Hourly Emissions - continued							
Jim Kilabuk (resupply vessel)	Rated Car	acitv	NOx	СО	PM10	VOC	SO2
		,	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
Main Engine EMD V20 645	3.600	dН	86.4	19.8	1.4436	2.538	5.53356
Main Engine EMD V20 645	3.600	dH	86.4	19.8	1.4436	2.538	5.53356
Generator, Cat. D3406	292	Hp	9.052	1.95056	0.6424	0.73292	0.4488332
Generator, Cat. D3406	292	Hp					
HPP, Cat. D343	300	Чр					
Bow Thruster Cat. D343	300	Hp	9.3	2.004	0.66	0.753	0.46113
		•					
Discoverer's OSR Fleet	Rated Cap	acity	NOx	CO	PM10	VOC	SO2
			lb/hr	lb/hr	lb/hr	lb/hr	lb/hr
Engine 1 on Pt. Barrow tug	1,502	Нр	15.771	8.6365	0.494158	15.771	2.3087242
Engine 2 on Pt. Barrow tug	1,502	Нр	15.771	8.6365	0.494158	15.771	2.3087242
Generator 1 on Pt. Barrow	150	Нр	2.925	0.549	0.0621	0.05805	0.230565
Emergency generator on Pt. Barrow	150	Нр					
Kvichak 47' skimming vessel	700	Нр	10.08	0.679	0.2807	0.4935	1.07597
Kvichak 47' skimming vessel	700	Нр	10.08	0.679	0.2807	0.4935	1.07597
Kvichak 34' work boat #3	300	Нр	3.072	0.0513	0.0507	0.1026	0.46113
Kvichak 34' work boat #3	300	Нр	3.072	0.0513	0.0507	0.1026	0.46113
Kvichak 34' work boat #4	300	Нр	3.072	0.0513	0.0507	0.1026	0.46113
Kvichak 34' work boat #4	300	Нр	3.072	0.0513	0.0507	0.1026	0.46113
Kvichak 34' work boat #5	300	Нр	3.072	0.0513	0.0507	0.1026	0.46113
Kvichak 34' work boat #5	300	Нр	3.072	0.0513	0.0507	0.1026	0.46113
Kvichak 34' work boat #6	300	Нр	3.072	0.0513	0.0507	0.1026	0.46113
Kvichak 34' work boat #6	300	Нр	3.072	0.0513	0.0507	0.1026	0.46113
Engine 1 on tug for supply barge	1,500	Нр	36	8.25	0.6015	1.0575	2.30565
Engine 2 on tug for supply barge	1,500	Нр	36	8.25	0.6015	1.0575	2.30565

						PROJECT TITL	E:		BY:
							1	Frontier Discoverer	D. Young
And						PROJECT NO:			PAGE 1 OF 1
AIR SCIENCES INC.								180-15	SHEET 6
			CALCUL	ATIONS		SUBJECT:			DATE:
#100113 - iCm11600							Lis	t of Emission Factors	12/22/2006
Emissions Unit				mission East	ore			Bofor	0000
	FF	NOv		DM10		SO2	SO2^	Kelen	ence
	Unit	NOX	00	T WITO	VOC	value x S	0.19 = S		
Air compressors	lb/hp-hr	0.00658	0.00575	0.000329	0.00658	0.0015371	0.00809 S	Tier 3, (planned). 225 to 450kw range. 500h	p = 373kW: NOx & VOC use
								NOX+NMHC value, CO, & PM. AP42: SO2.	
Boiler <100 mmBtu AP42	lb/mmBtu	0.143	0.0357	0.0236	0.00397	0.02736	0.144 S	AP42 Tbl 1.3-1: NOx, CO, & SO2, Tbls 1.3-	1 & 1.3-2; PM, and Tbl 1.2-3; VOC. 9/98
Boiler on Discoverer	lb/mmBtu	0.201	0.0774	0.0235	0.00141	0.02736	0.144 S	Clavton Industries: NOx. CO. PM. & VOC. A	P42: SO2.
								·· , ·····	
Fennica/Nordica main engines	lb/hp-hr	0.01891	0.000658	0.000401	0.000658	0.0012502	0.00658 S	Client provided data: NOx, CO, VOC, & SO2	2. AP42: PM.
ICE <=600 hp AP42	lb/hp-hr	0.031	0.00668	0.0022	0.00251	0.0015371	0.00809 S	AP42 Tbl 3.3-1, 10/96	
ICE >600 hp AP42	lb/hp-hr	0.024	0.0055	0.000401	0.000705	0.0015371	0.00809 S	AP42 Tbls 3.4-1 & 3.4-2 10/96	
Discoverer Cat. D399 (adj.)	lb/hp-hr	0.01616	0.00178	0.000508	0.0001526	0.0015371	0.00809 S	Spec from client, adjusted by 1.2: NOx, CO,	PM10, & VOC. AP42: SO2.
Kvic. 34' vessel engine	lb/hp-hr	0.01024	0.000171	0.000169	0.000342	0.0015371	0.00809 S	Cummins data: NOx, CO, PM10, & VOC. A	P42: SO2.
Kvic. 47' vessel engine	lb/hp-hr	0.0144	0.00097	0.000401	0.000705	0.0015371	0.00809 S	Lugger data: NOx & CO. AP42 700 hp: PM	110, VOC, CO, & SO2.
Not Applicable		0	0	0	0	0			
Pt Barrow Tug main engines	lb/hp-hr	0.0105	0.00575	0.000329	0.0105	0.0015371	0.00809 S	Tier 2 model year 2006 (vendor Cat info): N	Ox, CO, PM10, & VOC . AP42: SO2.
Dt. Dames Terr and and terr	lle /le ve de ve	0.0405	0.00000	0.000444	0.000007	0.0045074	0.00000.0	Out and former allight (Oct 2004D), NO. CO. DN	MA 8 1/00 AD40: 000
Pt. Barrow Tug generators	ib/np-nr	0.0195	0.00366	0.000414	0.000387	0.0015371	0.00809 5	Spec. from client (Cat 3304B): NOX, CO, PN	110, & VOC. AP42: SO2.
Shipboard incinerator. AP42	lb/ton	3	300	35	100	2.5		AP42 Tbl 2.1-12, Industrial/commercial and four) 10/96.	Domestic single chamber (largest factor of
^ SO2 emission factor is based	on S: the per	cent sulfur b	v weight in the	e fuel. For exa	ample the val	ue of S would	be 0.5 if the	sulfur content is 0.5%. AP42 Tbl 3.4-1. 10/9	6
Sulfur in fuel by wg	t. 1900	ppm is	0.19 %	6 S					-
, , , , , , , , , , , , , , , , , , ,									

				PROJECT TITLE:		BY:
A				Frontier Disc	overer	W. Wooster
ATD SCIENCES INC.				PROJECT NO:		PAGE 1 OF 1
AIR SCIENCES INC.				180-15		SHEET 2
The second second second second		CALCU	LATIONS	SUBJECT:		DATE:
				Owner Requested		12/2//2006
Frontier Discov	erer Owner I	Requested Li	mit (ORI) - Fleet wide l	Diesel Fuel Consum	otion	
					ption	
General ORL NO	Compliance	Equation:	$E_A + E_B + E_C +$	$E_D + E_F < 2$	245 tons NOx	
	•	•		5 2		
Whe	ere:					
	E _A =		Emissions from Frontier	Discoverer	Vessel A	
	E _B =		Emissions from Kapitan D	Dranitsyn	Vessel B	
	E _C =		Emissions from Fennica/	Nordica	Vessel C	
	F. =		Emissions from Jim Kilah	uk	Vessel D	
	=_ E_ =		Emissions from Frontier	Discoverer OSR Fleet	Vessel E	
	LE -				VE3361 L	
Specific ORL NO	x Compliance	Equation:				
$K_{RICE}^{*}((F_{A1}^{*}EF_{A1})+$	$(F_{A2}*EF_{A2})+(F_{E})$	₃₁ *EF _{B1})+(F _{C1} *E	EF _{C1}))+K _{HEAT} *((F _{A3} *EF _{A3})+(I	F _{B2} *EF _{B2})+(F _{C2} *EF _{C2}))+	2.6+1.2+3.9 <	245 tons
whe	re		200	0.00070		
	$K_{RICE} = 137, U_{RICE}$	000 / 7,000 / 2,0	UUU = 0 / 2 000 -	0.00979	Hp-hr-ton / ga	al-ID
	к _{неат} – 137, Е. –	Euel consum) / 2,000 – ation by source group i (gal	0.0000005	mmBlu-lon /	gai-ib
			Subir by Source group I (gai	10115)		
	$EF_i =$	Emission fact	or by source group I			
	2.6 tons	FD remaining	emissions			
	1.2 tons	JIM KIIADUK e	missions			
	3.9 tons	OSR Fleet en	nissions			
	137 000	Btu/gallon	AP42 diesel fuel heat con	itent		
	7.000	Btu/hp-hr	AP42 average brake-spe	cific fuel consumption		
	2,000	lb/ton	Conversion factor			
	1,000,000	Btu/mmBtu	Conversion factor			
Example Calculat	tion of NOv E	missions and	Comparison with OPI			
ORL Equation Var	iables:		Vessel Source	NOx Emission		Assumed Diesel
			Identification	Factor (EF)		Fuel Consumption (F)
			. /			
FD six Caterpillar	399 main drillir	ng engines	A1	0.0162 lb/r	ip-hr	250,000 gallons
FD Mit. 60EC65 m	nain propuisior	n engine	A2	0.024 lb/r	ip-nr	12,000 gallons
FD pollers	v propulsion o	nginos	A3 D1	0.201 ID/I 0.024 Ib/I	nmBlu p br	40,000 gallons
KD hoilers	y propulsion e	ingines	B2	0.024 Ib/i 0.143 lb/r	nmBtu	120 000 gallons
F/N four main pror	oulsion engines	s	C1	0.140 lb/l	np-hr	350 000 gallons
F/N two boilers		5	C2	0.143 lb/r	nmBtu	20,000 gallons
						, 3
ORL Equation Cor	nstants:		Source ID	Tons of NOx		
			A 4	0.0		
FD remaining sour	rces		A4	2.6		
				1.2		
OSIVI leet sources	5		L	5.9		
Find:		(where A1 = \	/essel Source Identificatior	n EF x fuel consumption	value; A2 etc.	.)
Is 245.0 tons >	137,000 Btu	ı hp-hr	ton x	((F _{A1} *EF _{A1})+(F _{A2} *EF _A	2)+(F _{B1} *EF _{B1})+	(F _{C1} *EF _{C1}))
	gallon	7,000 Btu	2,000 lb			
			i.			
+	137,000 Btu	ı mmBtu	ton x	((F _{A3} *EF _{A3})+(F _{B2} *EF _B	₂)+(F _{C2} *EF _{C2}))	+ 2.6 + 1.2 + 3.9 =
	gallon	10^6 Btu	2,000 lb			210.7 tons NOx
Yes, 245 tons is g	reater than 210	0.7 tons NOx				
Therefore, equation	n demonstrate	es compliance v	with this hypothetical examp	ple		

					PROJECT TITLE:	BY	
A					Frontier Discover	er 51.	D Young
<u> </u>					PRO JECT NO:	CI	PAGE 1 OF 2
AIR SCIENCES INC.					180-15	SHE	TAGE 1 01 2
	CAL	CUI ATIONS					•
Callenge - Second	•					DAT	12/12/2006
					TIALS		12/12/2000
HAZARDOUS AIR POLLUTA To simplify the estimate of em each set of emission factors. HAPs - Fuel Oil Combustion The estimated maximum amo	NTS (HAPs), as define ission; a yearly fuel use a; Engines unt of diesel fuel combu	ed pursuant to value is set at sted by the eng	Sectio a more gines lar	n 112(b) of than the pro ger than 60	the Clean Air Act. oposed total fuel use lim	itation and co	nservatively applied
2,000,000 gallons	137,000 Btu*	MMBtu	=	274,000	MMBtu/Yr		
year *AP-42 Appendix A, Diesel he	gallons 1, ating value, 9/85.	000,000 Btu					
The estimated HAP emissions	s from IC engines with > Emission Factor	600 hp output:	Emis	sions			
HAP	Ib/MMBtu*	I	b/yr	ton/yr			
Benzene	7.76E-04	-	212.6	0.106			
Toluene	2.81E-04		77.0	0.038			
Xvlenes	1.93E-04		52.9	0.026			
Formaldehvde	7.89E-05		21.6	0.011			
Acetaldehvde	2.52E-05		6.9	0.003			
Acrolein	7.88E-06		2.2	0.001			
Naphthalene	1 30E-04		35.6	0.018			
Total PAH**	8.20E-05		00.0	0.011			
			22.5	0.011			
*AP-42, Stationary IC sources	, Table 3.4-3.		22.5	0.216			
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amo	, Table 3.4-3. e already accounted for unt of diesel fuel combu	naphthalene. sted by the eng	^{22.5} _	0.216 Jual to or les	ss than 600 hp, express	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amou 2,000,000 gallons	a, Table 3.4-3. e already accounted for unt of diesel fuel combu 137,000 Btu*	naphthalene. sted by the eng MMBtu	22.5 gines eq =	0.216 Jual to or les 274,000	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amou 2,000,000 gallons year *AP-42 Appendix A, Diesel he	a, Table 3.4-3. e already accounted for a unt of diesel fuel combu <u>137,000 Btu*</u> gallons 1, ating value, 9/85.	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu	22.5 _ gines eq =	0.216 uual to or les 274,000	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions	a, Table 3.4-3. a already accounted for a unt of diesel fuel combu <u>137,000 Btu*</u> gallons 1,4 gallons 1,4 ating value, 9/85. a from IC engines with ≤	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output:	22.5 _ gines eq =	0.216 uual to or les 274,000	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amou 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions	a, Table 3.4-3. e already accounted for i unt of diesel fuel combu <u>137,000 Btu*</u> gallons 1, ating value, 9/85. s from IC engines with <u>≤</u> Emission Factor	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output:	22.5 _ gines eq = Emis	0.216 ual to or les 274,000	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amou 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u>	a, Table 3.4-3. e already accounted for in unt of diesel fuel combu <u>137,000 Btu*</u> gallons 1, ating value, 9/85. s from IC engines with <u><</u> Emission Factor <u>Ib/MMBtu*</u>	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 _ gines eq = <u>Emis</u> <u>b/yr</u>	0.216 ual to or les 274,000 ssions <u>ton/yr</u>	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene	a, Table 3.4-3. e already accounted for a unt of diesel fuel combu <u>137,000 Btu*</u> gallons <u>1,</u> ating value, 9/85. s from IC engines with <u><</u> Emission Factor <u>Ib/MMBtu*</u> 9.33E-04	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 gines eq = <u>Emis</u> <u>b/yr</u> 255.6	0.216 uual to or les 274,000 ssions <u>ton/yr</u> 0.1278	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene	a, Table 3.4-3. e already accounted for in unt of diesel fuel combu <u>137,000 Btu*</u> gallons 1, ating value, 9/85. a from IC engines with ≤ Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 gines eq = <u>Emis</u> <u>b/yr</u> 255.6 112.1	0.216 0.216 274,000 ssions <u>ton/yr</u> 0.1278 0.0560	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes	a, Table 3.4-3. e already accounted for the already accounted for the already accounted for the already accounted for the already account of the already accounted for the already accounted for the already account of the already	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 gines eq = <u>Emis</u> <u>b/yr</u> 255.6 112.1 78.1	0.216 0.216 274,000 ssions <u>ton/yr</u> 0.1278 0.0560 0.0390	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene	a, Table 3.4-3. a already accounted for a unt of diesel fuel combut <u>137,000 Btu*</u> gallons 1, ating value, 9/85. a from IC engines with ≤ Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 gines eq = <u>b/vr</u> 255.6 112.1 78.1 706.9	0.216 0.216 274,000 ssions <u>ton/yr</u> 0.1278 0.0560 0.0390 0.3535	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene	a, Table 3.4-3. a already accounted for the second secon	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 = gines eq = <u>Emis</u> <u>b/yr</u> 255.6 112.1 78.1 78.1 706.9 10.7	0.216 0.216 274,000 3sions <u>ton/yr</u> 0.1278 0.0560 0.0390 0.3535 0.0054	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde	a, Table 3.4-3. a already accounted for the second secon	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 = gines eq = <u>Emis</u> <u>b/yr</u> 255.6 112.1 78.1 706.9 10.7 323.3	0.011 0.216 0.216 274,000 ssions ton/yr 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde	a, Table 3.4-3. a already accounted for the second secon	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 = gines eq = <u>b/yr</u> 255.6 112.1 78.1 706.9 10.7 323.3 210.2	0.011 0.216 0.216 274,000 ssions ton/yr 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amor 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde Acrolein	a, Table 3.4-3. e already accounted for the self of	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 = gines eq = <u>b/yr</u> 255.6 112.1 78.1 706.9 10.7 323.3 210.2 25.3	0.011 0.216 0.216 274,000 ssions ton/yr 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amor 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde Acetaldehyde Actolein Naphthalene	a, Table 3.4-3. a already accounted for 1 ating value, 9/85. a from IC engines with ≤ Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 gines eq = <u>b/yr</u> 255.6 112.1 78.1 706.9 10.7 323.3 210.2 25.3 23.2	0.216 0.216 0.216 274,000 355 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acrelaine Naphthalene Total PAH**	a, Table 3.4-3. a already accounted for 1 already accounted for 1 gallons 1,1 ating value, 9/85. a from IC engines with ≤ Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05 8.32E-05	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 gines eq = Emis <u>b/vr</u> 255.6 112.1 78.1 706.9 10.7 323.3 210.2 25.3 23.2 22.8	0.011 0.216 0.216 274,000 355005 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116 0.0114	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde Ace	a, Table 3.4-3. a already accounted for 1 already accounted for 1 allons 1,1 aling value, 9/85. a from IC engines with ≤ Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05 8.32E-05	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 gines eq = Emis b/vr 255.6 112.1 78.1 706.9 10.7 323.3 210.2 25.3 23.2 22.8	0.011 0.216 0.216 274,000 355005 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116 0.0114 0.884	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde Ace	a, Table 3.4-3. a already accounted for a unt of diesel fuel combu <u>137,000 Btu*</u> gallons <u>1,</u> ating value, 9/85. a from IC engines with ≤ Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05 8.32E-05 3.7 Table 3.3-2.	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u>	22.5 gines eq = Emis b/yr 255.6 112.1 78.1 706.9 10.7 323.3 210.2 25.3 23.2 22.8	0.011 0.216 0.216 274,000 355005 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.0054 0.1051 0.0127 0.0116 0.0114 0.884	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde Accelandehyde Accolein Naphthalene Total PAH** *AP-42, Stationary IC sources **Emission factor excludes the	a, Table 3.4-3. a already accounted for a gallons 1, ating value, 9/85. ating value, 9/85. ating value, 9/85. from IC engines with \leq Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05 8.32E-05 3.7 Table 3.3-2. a already accounted for a	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u> naphthalene.	22.5 = gines eq = Emis <u>b/yr</u> 255.6 112.1 706.9 10.7 323.3 210.2 25.3 23.2 22.8 =	0.011 0.216 0.216 274,000 ssions ton/yr 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116 0.0114 0.884	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde Accolein Naphthalene Total PAH** *AP-42, Stationary IC sources **Emission factor excludes the	a, Table 3.4-3. a already accounted for a gallons 1, ating value, 9/85. a from IC engines with \leq Emission Factor <u>Ib/MMBtu*</u> 9.33E-04 4.09E-04 2.85E-04 2.58E-03 3.91E-05 1.18E-03 7.67E-04 9.25E-05 8.48E-05 8.32E-05 3.7able 3.3-2. a already accounted for the	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u> naphthalene.	22.5 = gines eq = Emis <u>b/yr</u> 255.6 112.1 78.1 706.9 10.7 323.3 210.2 25.3 23.2 22.8 =	0.011 0.216 0.216 274,000 ssions ton/yr 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116 0.0114 0.884	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:
*AP-42, Stationary IC sources **Emission factor excludes the The estimated maximum amound 2,000,000 gallons year *AP-42 Appendix A, Diesel he The estimated HAP emissions <u>HAP</u> Benzene Toluene Xylenes Propylene 1,3-Butadiene Formaldehyde Acetaldehyde Acctolein Naphthalene Total PAH** *AP-42, Stationary IC sources **Emission factor excludes the	a, Table 3.4-3. e already accounted for a unt of diesel fuel combu $\begin{array}{r} 137,000 \text{ Btu}^*\\ gallons & 1, \\gallons & 2, \\gallons & 1, \\gallons & 1, \\gallons & 2, \\gallons & 1, \\gallons & 2, \\gallons & 1, \\gallons & 2, \\gall$	naphthalene. sted by the eng <u>MMBtu</u> 000,000 Btu 600 hp output: <u>I</u> naphthalene.	22.5 = gines eq = Emis <u>b/yr</u> 255.6 112.1 78.1 706.9 10.7 323.3 210.2 25.3 23.2 22.8 =	0.011 0.216 0.216 274,000 0.1278 0.0560 0.0390 0.3535 0.0054 0.1617 0.1051 0.0127 0.0116 0.0114 0.884	ss than 600 hp, express MMBtu/Yr	ed in units of	heat input:

			BRO JECT		BV-		
			FROJECT	IIILE.	D Young		
			PROJECT				
AIR SCIENCES INC			FROJECT	100.15	FAGE 2 OF 2		
AIR SCIENCES INC.				180-15	SHEET 7		
	CALC	JLATIONS	SUBJECT		DATE:		
BERFER - FORLINGE				HAPs	12/12/2006		
HAZARDOUS AIR POLI	LUTANTS (HAPs), as defined in the second sec	oursuant to Section 1	2(b) of the Clea	n Air Act continu	led		
The estimated maximum	amount of dieser fuer compusie	d by bollers, expressed	in units of neat in	ipul:			
2,000,000 gall	ons 137,000 Btu*	<u>MMBtu</u> = 2	74,000 MMBtu/Y	ŕr			
*AP-42 Appendix A, Dies	el heating value, 9/85.	J,000 Btu					
The estimated HAP emis	sions from boilers:						
	Emission Factor	Emissio	ns				
HAP	<u>lb/1000 gal*</u>	<u>lb/yr to</u>	n/yr				
POM	3.30E-03	6.6	0.0033				
Formaldehyde	6.10E-02	122.0	0.0610				
	lb/10 ¹² Btu**						
Arsenic	4	11 (00055				
Pondlium	2	0.9	00041				
	5	0.8 (.00041				
Cadmium	3	0.8 (.00041				
Chromium	3	0.8 0	.00041				
Lead	9	2.5 (.00123				
Mercury	3	0.8 0	.00041				
Manganese	6	1.6 (.00082				
Nickel	3	0.8 (00041				
Selenium	15	41 (00206				
o o lo li di			0.071				
			0.071				
*AP-42, External Combustion Sources, Table 1.3-8, Distillate Oil, 9/98.							
AP-42, External Combu	Islion Sources, Table 1.3-10, DI	Stillate Oli, 9/98.					
		HAPs - Sumn	ary				
	1.171 TPY. T	otal emissions of all H	APs from all die	esel fueled sources	5.		

Frontier Discoverer Caterpillar D399 Emission Factors

CATERPILLAR®

EDS 82.0 Date 5-95

Caterpillar Diesel Prechamber and Selected D.I. Engines

The passage of the 1990 Clean Air Act Amendments will increase the requests for emission data from both current engines and previously purchased engines. The information in this publication is intended to assist in answering the emission related questions on previously purchased engines. Your source of data for new engines is the TMI system. In some cases data is presented for turbocharged, turbocharged jacket water aftercooled (JWAC) and turbocharged separate circuit aftercooled (SCAC) configurations. The SCAC engines all had watercooled exhaust manifolds. The emission levels obtained on a SCAC engine with non-watercooled exhaust manifolds would be similar to the emissions on an engine with watercooled manifolds except the exhaust stack temperatures could be as much as 75°C higher at the rated point for non-watercooled manifolds.

List of Prechamber Engines Included in This Document

D315 PC D330A 4.5 x 5.5 I4 2V NA, T D318 PC D333A 4.5 x 5.5 I6 2V NA, T 3304 PCNA I4 4.75 x 6.0 2V 3304 PCT I4 4.75 x 6.0 2V 3306 PCNA I6 4.75 x 6.0 2V 3306 PCT 16 4.75 x 6.0 2V 3306 PCTA I6 4.75 x 6.0 2V D334 PCTA I6 4.75 x 6.0 4V D337 PCT 5 1/8 x 6.5 l6 2V 3406 PCT 16 5.4 x 6.5 4V 3406 PCTA I6 5.4 x 6.5 4V 3408 PCTA V8 5.4 x 6.0 4V 3412 PCTA V12 5.4 x 6.0 4V D343 PCT I6 5.4 x 6.5 4SV (SIMILAR TO 1693 TRUCK) D343 PCTA I6 5.4 x 6.5 4SV (SIMILAR TO 1693 TRUCK) D348 PCTA V12 5.4 x 6.5 4V D349 PC SCAC V16 5.4 x 6.5 4V D353 PCTA I6 6.25 x 8 2V D353 PC SCAC 110 F I6 6.25 x 8.0 2V D353 PC SCAC 85 F I6 6.25 x 8.0 2V D379 PCTA V8 6.25 x 8.0 2V D398 PC SCAC 85 F V12 6.25 x 8.0 2V D398 PCTA V12 6.25 x 8.0 2V D399 PCTA V16 6.25 x 8.0 2V D399 PC SCAC 85 F 6.25 x 8.0 2V

SV = SLANT VALVE TA = JACKET WATER AFTERCOOLED SCAC = SEPARATE CIRCUIT AFTERCOOLED 4V = 4 VERTICAL VALVES TT = TWIN TURBOCHARGERS TTA = TWIN TURBO AFTERCOOLED List of DI Engines 3306 DINA 16 4.75 x 6.0 2V 3306 DIT I6 4.75 x 6.0 2V 3406 DIT I6 5.4 x 6.5 GEN SET 3406 DITA I6 5.4 x 6.5 GEN SET 3406 DIT I6 5.4 x 6.5 INDUSTRIAL 3406 DITA 16 5.4 x 6.5 INDUSTRIAL 3408 DIT V8 5.4 x 6.0 INDUSTRIAL 3408 DITA V8 5.4 x 6.0 INDUSTRIAL 3408 DITA V8 5.4 x 6.0 GEN SET 3412 DIT V12 5.4 x 6.0 GEN SET 3412 DIT V12 5.4 x 6.0 IND AND 50 HZ GEN SET 3412 DITT V12 5.4 x 6.0 IND AND 50 HZ GEN SET 3412 DITTA V12 5.4 x 6.0 50 HZ GEN SET 3412 DITTA V12 5.4 x 6.0 60 HZ GEN SET 3412 DITTA V12 5.4 x 6.0 INDUSTRIAL

Table 1

It is difficult to supply all the information that could be requested. The emission data is presented in g/hr. In some cases the emissions may be requested in ppm. The ppm can be approximately calculated using the equations given in Table 2.

	Emissions Calculations					
ľ	$SO_2 g/hr = .01998 \times (fuel rate g/hr) \times (\% fuel sulfur by weight)$					
	NO _x concentration (ppm) = $629 \times \frac{(NO_x \text{ mass emissions g/hr})}{(Exhaust mass flow kg/hr)}$					
	CO concentration (ppm) = $1034 \times \frac{(CO \text{ mass emissions g/hr})}{(Exhaust mass flow kg/hr)}$					
	HC concentration (ppm) = $2067 \times \frac{(\text{HC mass emission g/hr})}{(\text{Exhaust mass flow kg/hr})}$					
	SO_2 concentration (ppm) = $452 \times \frac{(SO_2 \text{ mass emissions g/hr})}{(Exhaust mass flow kg/hr)}$					

Table 2

The SO₂ produced by an engine is a function of the sulfur in the fuel. Table 2 gives an equation for calculating SO₂ in the exhaust. Fuel sulfur varies greatly. An average value to be used in the above equation is .2 for many industrial fuels.

The engine tests were run with inlet air temperature and pressure to the engine of 85°F and 28.4 in.hg ABS respectively.

The Caterpillar smoke density number is given for each point. To determine smoke opacity, use the smoke chart in Table 3 and the appropriate stack diameter.

The particulate matter is based on a correlation between smoke density and particulates. Particulates consist of soot, soluble organic fractions, sulfates, and miscellaneous compounds from the oil additive package. Soluble organic fraction is approximately 60 to 80% lubricating oil that finds its way into the combustion chamber by passing the piston rings, flowing down the valve guides, or flowing past the turbocharger seals. If a field measurement is made on a very old, worn out engine, the particulates could be higher than the value listed in the table. The current Caterpillar accepted particulate measuring procedure, ISO 8178-1, was not available at the time these engines were tested. The values of particulates estimated from smoke are a good approximation of the values obtained with the ISO procedure.

The EPA approved particulate measurement procedure, Method 5, will give equivalent results if the contractor is skilled.

The gaseous emission measurements were made using SAE test procedures recommended at the time the emissions were run. These procedures have changed very little and are consistent with EPA CFR 40 part 86 subpart D. Subpart D is similar to the following procedures:

EPA	SAE
Method 25A for HC	J215
Method 10 for CO	J177a
Method 7E for NO _x	J177a

For further emission information, consult TMI performance parameter DM1176-01.

The exhaust stack temperatures can vary depending on how far downstream from the turbocharger the measurement was made. In most of the cases shown in the tables, the thermocouple would have been less than 6 feet from the turbocharger outlet. Exhaust temperatures at this location would have $a \pm 5\%$ °C range from the table values.

Brake specific fuel consumption (BSFC) was measured using #2 diesel fuel with 35 API and LHV of 18,390 Btu/lb.

If field measurements are to be made, refer to EDS 81.0, 11-91, LEKQ1341, for field test guidelines.

A note is at the bottom of each performance sheet explaining that the emission values have been increased by the factors given. This increase is to cover measurement errors and engine to engine differences. The emission data given is for engines with relatively low hours, and thus applies only to well maintained engines. The emissions from old, or poorly maintained engines could differ from the emissions given in the table.

If a letter needs to accompany the data, the following format may be used.

Example Text:

Emissions Data

Attached is the exhaust emission data requested. The data was obtained through actual engine test on an engine of similar configuration to yours. Emissions data was measured using procedures consistent with EPA CFR 40, part 86, subpart D. The particulate matter is estimated from a smoke density to particulate correlation. The fuel used was #2 diesel with 35 API and LHV of 18,390 Btu/lb. The data is based on steady state engine operating conditions with inlet air conditions of 85°F and 28.4 in. hg ABS temperature and pressure respectively.

The NO_x shown is not actually in the exhaust. It's based on the assumption that all NO and NO₂ in the exhaust is converted to NO₂ in the atmosphere. The NO_x is reported with a molecular weight equal to NO₂ and is corrected for 75 grains/lb engine inlet air humidity.

This is Caterpillar's best estimate of the emissions of your engine. If exact emissions information is required, an emissions test will be needed on your engine.

(If SO_x is provided in the emission data, include the following sentence.) The SO_x value is based on fuel sulfur content of .2% by weight.

If the inquiry is for NO_x data only, don't include HC, particulate, CO, etc. data. If an air board has the extra data, they are likely to want a measurement of these species during an audit. The extra testing adds expense.

If you have questions regarding use of this information, please call:

John Dystrup Caterpillar Engine Division 309-578-2616
			Smoke	Convers	ion Char	t			
Opacity				Stack D	Jiameter				
2"	3"	4 #	5 "	6"	8"	10"	12ª	14*	1
÷0.06	0.03	0.03	0.02	0.02	0.01	0.01	0.01	0.01	0
0.13	0.08	0.07	0.05	0.05	0.03	0.02	0.02	0.02	0
0.21	0.12	0.11	0.08	0.08	0.05	0.04	0.04	0.03	0
0.29	0.17	0.15	0.11	0.11	0.07	0.06	0.05	0.04	0
0.36	0.22	0.18	0.14	0.13	0.09	0.07	0.06	0.05	0
0.43	0.27	0.22	0.17	0.16	0.11	0.09	0.07	0.06	0
0.52	0.32	0.26	0.20	0.19	0.13	0.11	0.09	0.07	0
0.61	0.38	0.30	0.24	0.21	0.15	0.12	0.10	0.08	0
0.69	0.43	0.35	0.27	0.24	0.17	0.14	0.12	0.09	0
0.77	0.49	0.39	0.31	0.26	0.19	0.16	0.13	0.10	0
0.87	0.54	0.43	0.34	0.29	0.21	0.17	0.14	0.11	0
0.97	0.60	0.47	0.38	0.32	0.23	0.19	0.16	0.13	0
1.08	0.66	0.52	0.42	0.34	0.25	0.20	0.17	0.14	C
	0.73	0.56	0.45	0.37	0.27	0.22	0.18	0.15	0
	0.79	0.61	0.49	0.40	0.29	0.24	0.20	0.16	C
	0.87	0.66	0.53	0.42	0.31	0.25	0.21	0.17	0
	0.94	0.70	0.56	0.45	0.33	0.27	0.23	0.18	C
	1.00	0.75	0.60	0.48	0.36	0.29	0.24	0.20	C
		0.80	0.64	0.51	0.38	0.30	0.25	0.21	0
		0.85	0.68	0.54	0.40	0.32	0.27	0.22	C
		0.90	0.72	0.57	0.42	0.34	0.28	0.23	C
		0.95	0.76	0.60	0.44	0.36	0.30	0.25	C
		1.00	0.81	0.64	0.46	0.38	0.31	0.26	0
			0.85	0.67	0.48	0.39	0.32	0.28	C
			0.90	0.71	0.51	0.41	0.34	0.29	C
			0.94	0.74	0.53	0.43	0.36	0.30	C
			0.98	0.79	0.56	0.45	0.37	0.32	0
			1.03	0.81	0.59	0.48	0.39	0.33	0
				0.85	0.61	0.50	0.40	0.35	0
				0.88	0.64	0.52	0.42	0.36	C
				0.93	0.67	0.54	0.43	0.37	c
				0.99	0.70	0.56	0.45	0.40	0
				1.05	0.73	0.59	0.47	0.41	0
					0.76	0.61	0.49	0.43	0
	,				0.79	0.63	0.51	0.44	C
					0.83	0.66	0.52	0.46	C
					0.86	0.69	0.54	0.48	C
					0.90	0.71	0.56	0.49	0
					0.94	0.74	0.58	0.51	0
					0.98	0.76	0.61	0.52	C
						0.90	0.72	0.62	C
							0.85	0.72	C
							1.00	0.84	0
								0.99	C
									C
									•
	Opacity 2" 0.06 0.13 0.29 0.36 0.43 0.52 0.61 0.69 0.77 0.87 0.97 1.08	Opacity 3" 0.06 0.03 0.13 0.08 0.21 0.12 0.29 0.17 0.36 0.22 0.43 0.27 0.52 0.32 0.61 0.38 0.69 0.43 0.77 0.49 0.87 0.54 0.97 0.60 1.08 0.66 0.73 0.79 0.87 0.94 1.00 1.00	Qpacity 3" 4" 0.06 0.03 0.03 0.13 0.08 0.07 0.21 0.12 0.11 0.29 0.17 0.15 0.36 0.22 0.18 0.43 0.27 0.22 0.52 0.32 0.26 0.61 0.38 0.30 0.69 0.43 0.35 0.77 0.49 0.39 0.87 0.54 0.43 0.97 0.60 0.47 1.08 0.66 0.52 0.73 0.56 0.79 0.61 0.87 0.64 0.97 0.60 0.79 0.61 0.87 0.66 0.94 0.70 1.00 0.75 0.80 0.85 0.90 0.95 1.00 0.95 1.00 1.00	Opacity 3" 4" 5" 0.06 0.03 0.03 0.02 0.13 0.08 0.07 0.05 0.21 0.12 0.11 0.08 0.29 0.17 0.15 0.11 0.36 0.22 0.18 0.14 0.43 0.27 0.22 0.17 0.52 0.32 0.26 0.20 0.61 0.38 0.30 0.24 0.69 0.43 0.35 0.27 0.77 0.49 0.39 0.31 0.87 0.54 0.43 0.34 0.97 0.60 0.47 0.38 0.79 0.61 0.449 0.87 0.66 0.53 0.79 0.61 0.49 0.87 0.66 0.53 0.94 0.79 0.61 0.80 0.64 0.85 0.94 0.95 0.76 0.90 0.72	Opacity Stack E 2" 3" 4" 5" 6" 0.06 0.03 0.03 0.02 0.02 0.13 0.08 0.07 0.05 0.05 0.21 0.12 0.11 0.08 0.08 0.29 0.17 0.15 0.11 0.11 0.43 0.27 0.22 0.17 0.16 0.52 0.32 0.26 0.20 0.19 0.61 0.38 0.30 0.24 0.21 0.69 0.43 0.35 0.27 0.24 0.21 0.69 0.43 0.35 0.27 0.24 0.21 0.69 0.43 0.35 0.27 0.24 0.21 0.61 0.38 0.30 0.24 0.21 0.37 0.70 0.60 0.47 0.38 0.32 0.97 0.60 0.47 0.38 0.32 0.97 0.61 0.49 0.40	Smoke Conversion Char Opacity Stack Diameter 2" 3" 4" 5" 6" 8" 0.06 0.03 0.03 0.02 0.02 0.01 0.13 0.08 0.07 0.05 0.05 0.03 0.21 0.12 0.11 0.08 0.06 0.05 0.29 0.17 0.15 0.11 0.10 0.07 0.36 0.22 0.18 0.14 0.13 0.09 0.43 0.27 0.22 0.17 0.16 0.11 0.52 0.32 0.26 0.20 0.19 0.13 0.61 0.38 0.30 0.24 0.21 0.15 0.69 0.43 0.34 0.29 0.21 0.17 0.61 0.43 0.34 0.29 0.21 0.17 0.60 0.47 0.38 0.32 0.23 1.02 0.87 0.66 0.52 0.42	Smoke Conversion Chart Opacity Stack Diameter 2" 3" 4" 5" 6" 8" 10" 0.06 0.03 0.03 0.02 0.02 0.01 0.01 0.13 0.08 0.07 0.05 0.03 0.02 0.21 0.12 0.12 0.11 0.08 0.06 0.05 0.04 0.29 0.17 0.15 0.11 0.11 0.07 0.06 0.52 0.32 0.22 0.18 0.14 0.13 0.09 0.07 0.43 0.27 0.22 0.17 0.16 0.11 0.09 0.07 0.50 0.33 0.27 0.24 0.17 0.14 0.73 0.11 0.61 0.38 0.39 0.21 0.17 0.14 0.73 0.21 0.17 0.57 0.54 0.43 0.35 0.22 0.21 0.17 0.14 0.73 0.56<	Sinoke Conversion Chart Opacity Stack Diameter 2* 3* 4* 5* 6* 8* 10* 12* 0.06 0.03 0.02 0.02 0.01 0.01 0.01 0.13 0.08 0.07 0.05 0.06 0.05 0.06 0.06 0.21 0.12 0.11 0.11 0.07 0.06 0.07 0.06 0.56 0.22 0.18 0.14 0.13 0.09 0.07 0.06 0.52 0.32 0.22 0.17 0.16 0.11 0.09 0.07 0.06 0.63 0.32 0.24 0.21 0.15 0.11 0.19 0.13 0.11 0.19 0.13 0.16 0.13 0.69 0.43 0.35 0.27 0.24 0.17 0.14 0.12 0.77 0.49 0.39 0.31 0.26 0.17 0.14 0.12 0.77 0.	Smoke Conversion Chart Opacity Stack Diameter 2* 3* 4* 5* 6* 8* 10* 12* 14* 0.06 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.21 0.12 0.11 0.08 0.08 0.05 0.04 0.05 0.05 0.43 0.22 0.18 0.14 0.13 0.09 0.07 0.06 0.05 0.43 0.27 0.22 0.17 0.14 0.13 0.09 0.07 0.06 0.52 0.52 0.43 0.35 0.27 0.24 0.17 0.16 0.11 0.09 0.07 0.64 0.35 0.27 0.24 0.17 0.14 0.12 0.09 0.77 0.64 0.43 0.34 0.29 0.21 0.17 0.14 0.11 0.97 0.66 0.47 0.38 0.32 0.23 0

h:charisma/smkcvcht

	EN	IISSIO	NS DAT	TA FOR	D399	JWAC	PCTA	PRECH	AMBER	ENGIN	ES
								1			
				}	1300	RPM					
POWER	X LOAD	BMEP	S FUEL	NOx	co	TOTAL	CAT	PARTIC-	EXHAUST	EXHAUST	A/F
KW		КРА	CONSUM	AS NO2		HC's	SMOKE	ULATES	STACK	MASS	
		·	GM/KW-H	GM/HR	GM/HR	GM/HR		GM/HR	TEMP C	KG/HR	
960.4	100.0	1376.9	240.4	12209.4	833.8	40.5	0.05	228.3	493.3	6100.5	25.1
716.4	75.0	1036.3	238.4	8996.4	902.7	63.0	0.02	73.5	415.6	4905.9	27.3
482.8	50.0	691.5	242.8	6242.4	718.6	63.0	0.02	56.1	365.6	3748.2	30.7
242.5	25.0	347.5	288.5	3396.6	947.0	340.5	0.04	84.6	287.8	2824.5	40.8
19.4	2.0	27.6	1562.3	413.1	1902.1	513.0	0.09	164.7	115.6	2444.1	92.6
											I
					1200	RPM					
										EVEL LOT	
POWER	% LOAD	BMEP	S FUEL	NOX	co	TOTAL	CAT	PARTIC-	EXHAUST	EXHAUST	A/F
KW		КРА	CONSUM	AS NO2		HC'S	SMOKE	ULATES	STACK	MASS	
		4545 -	GM/KW-H	GM/HR	GM/HR	GM/HR		IGM/HR	IEMP C	KU/HK	
976.1	100.0	1515.5	237.5	11016.0	1800.0	/5.5	0.02	87.7	510.0	2022.0	24.4
732.1	75.0	1136.9	231.3	8445.6	1350.0	83.7	0.02	68.0	458.9	4238.2	20.0
490.3	50.0	761.2	235.3	5875.2	900.0	155.5	0.02	52.1	392.2	34//./	29.8
246.3	25.0	582.7	208.6	5121.2	900.0	291.8	0.03	02.1	243.5	2/04.5	41.2
17.9	2.0	27.6	1285.7	1101.6	1800.0	9/8.6	0.07	115./	154.4	2208.2	104.2
				ļ	1000						
					1000	RPM					
POWER	% LOAD	BMEP	S FUEL	NOX	CO	TOTAL	CAT	PARTIC-	EXHAUST	EXHAUST	A/F
KW		KPA	CONSUM	AS NO2		HC's	SMOKE	ULATES	STACK	MASS	
			GM/KW-K	GM/HR	GM/HR	GM/HR		GM/HR	TEMP C	KG/HR	
813.4	100.0	1515.5	234.1	9180.0	1296.0	67.5	0.02	65.3	537.8	4362.7	21.5
611.9	75.0	1140.4	231.8	6572.9	990.0	54.5	0.02	49.5	493.3	5304.5	22.4
408.2	50.0	761.2	229.3	4957.2	918.0	44.1	0.02	37.9	426.7	2531.4	25.0
205.2	25.0	382.7	258.1	2754.0	918.0	115.2	0.03	47.6	287.8	2117.7	40.2
14.9	2.0	27.6	1393.0	918.0	1152.0	892.4	0.05	6/./	115.6	1809.1	117.0
			<u> </u>								
											· · · · · · · · · · · · · · · · · · ·
		<u> </u>									
		ļ									
		<u> </u>		}aa-		<u> </u>				<u> </u>	
			<u> </u>	<u> </u>						<u> </u>	
						⊢-		-			
		[F		·		ļ
						·					
						L	<u> </u>				
						··· · · · ·					
		The nomin	al values	of NOx.	CO, HC, a	nd partic	ulates hav	ve been mu	ltiplied	by the	
		factors	1.2	1.8	2.0	1.5	respectiv	vely to ta	ke into		
		account m	easuremen	t and eng	ine varia	bility.	If the nor	ninal valu	les are de	sired,	
		the table	values m	ay be div	ided by t	he respect	tive facto	ors.		· · · · · · · · · · · · · · · · · · ·	
	L	This is C	aterpilla	r's best	estimate (of the em	issions of	f your end	ine.		
· · · · · · · · · · · · · · · · · · ·		If exact	emissions	data is	required.	an emiss	ions test	will be r	needed		
		on your e	engine.								
	.			•						· · · ·	

.

	E	MISSIO	NS DAT	TA FOR	D399	SCAC	(85) 1	PRECHA	MBER 1	ENGINE	S
	1		WATER	COOL	ED EXH	AUST I	MANIFO	LDS	T		
			ĺ	[1300	RPM		l			
	·					<u> </u>	<u> </u>		<u> </u>	1	
POWER	% LOAD	BMEP	S FUEL	NOX	со	TOTAL	CAT	PARTIC-	EXHAUST	EXHAUST	A/F
KW		KPA	CONSUM	AS NO2		HC's	SMOKE	ULATES	STACK	MASS	
			GM/KW-H	GM/HR	GM/HR	GM/HR		GM/HR	TEMP C	KG/HR	
960.4	100.0	1376.9	240.4	8148.2	833.8	40.5	0.08	350.8	422.8	5858.2	25.3
716.4	75.0	1036.3	238.4	6005.6	902.7	63.0	0.04	141.5	372.2	4727.3	27.6
482.8	50.0	691.5	242.8	3672.0	718.6	63.0	0.05	139.5	320.0	3725.9	31.7
242.5	25.0	347.5	288.5	2034.3	947.0	340.5	0.06	130.4	239.4	2903.6	41.4
19.4	2.0	27.6	1562.3	413.1	1902.1	513.0	0.09	170.3	145.0	2527.7	83.3
					1200	RPM					
POWER	% LOAD	BMEP	S FUEL	NOX	CO	TOTAL	CAT	PARTIC-	EXHAUST	EXHAUST	A/F
K¥	· · · · · · · · · · · · · · · · · · ·	KPA	CONSUM	AS NOZ		HC'S	SMOKE	ULATES	STACK	MASS	
07/ 4	400.0	AFAF F	GM/KW N	GM/HR	GM/HR	GM/HR	0.07	GM/HR	TEMP C	KG/HR	
9/6.1	100.0	1515.5	257.5	(1993.9	882.7	().5	0.06	251.2	437.2	>>>>2.3	23.1
/52.1	/5.0	1156.9	221.3	0159.8	/10.1	85.7	0.04	155.8	390.0	4407.3	25.5
490.3	50.0	/61.2	235.5	4360.5	022.0	155.5	0.03	/9.1	352.8	3774	29.5
246.3	25.0	382.7	268.6	2407.0	816.5	291.8	0.05	105.7	239.4	2//1.4	40.8
17.9	2.0	27.6	1285.7	405.8	2553.7	978.6	0.09	162.5	135.6	2411.4	89.3
		·			1000	DDV					
					1000	KPM					I
POWER	% LOAD	BMEP	S FUEL	NOX	<u>co</u>	TOTAL	CAT	PARTIC-	EXHAUST	EXHAUST	A/F
KW		КРА	CONSUM	AS NO2		HC's	SMOKE	ULATES	STACK	MASS	
			GM/KW-H	GM/HR	GM/HR	GM/HR		GM/HR	TEMP C	KG/HR	
813.4	100.0	1515.5	234.1	6510.5	1102.3	137.0	0.12	373.1	483.9	4154.1	20.8
611.9	75.0	1140.4	231.8	4828.7	501.7	108.9	0.05	119.9	430.6	3204.5	21.6
408.2	50.0	761.2	229.3	3787.7	277.7	88.2	0.03	56.1	353.3	2495.5	25.6
205.2	25.0	382.7	258.1	2607.1	416.3	115.2	0.06	95.4	227.8	2125.0	39.1
14.9	2.0	27.6	1395.0	284.6	5/61.1	892.4	0.06	85.9	116.1	1912.3	90.9
					800 R	PM					
	4 1 0 1 D	DHED	0.5451			70711	C 1 7	DADTIC	EVILATIOT	EVUALIOT	A / F
POWER	% LOAD	BMEP	SFUEL	NOX	CO	TUTAL	CAL	PARTIC-	EXHAUSI	EXHAUST	A/F
<u>KW</u>		KPA	CONSUM	AS NOZ	014 (115	HC'S	SMUKE	ULATES	STACK	MASS	
755 3			GM/KW-H	GM/HK	GM/HK	GM/HK	0.10	GM/HK	12MP C	AU/HK	21 5
375.2	100.0	627.4	231.3	2397.9	318.2	52.5	0.10	130.9	400.1	1055.0	21.7
267.2	/5.0	022.0	221.1	2000.0	200.0	40.4	0.07	00.U	317.0	10/9.1	20.5
1//.0	50.0	413.7	242.0	1909.4	257.9	20 YO	0.07	 57.4	237.2	15/0 0	57.9
89.0	25.0	200.9	294.U	840.9	420.1	07.4	0.05	21.0	107.7	1516 5	102.0
10.4	5.0	24.1	1390.3	110.2	2074.0	002.3	Ų.04	42.4	103.3	13(4,5	102.7
					475 R	PM					
DOLER	V LOAN	ONED	e fue	NOv	<u></u>	TOTAL	CAT	DADTIC	EVHALLET	EVHALIST	A /F
	% LUAD	BHEP KDA	S FUEL	AC NOT			CHOVE	PARTIG"	CTACK	MACC	MT
KW		KPA		AS NUZ			SMUKE	CH /ND	TEND C	MA33	
E 7	1010	20.7	GM/KW-Π 1/20 Z	90 1	3202 F	507 D	0.08	57 9	1EMF C 84 4	NU/ IIN 908 4	116 3
5.5	IDLE	20.7	1439.3	00,1	2202.5	507.0	0.08		04.4	070.0	110.5
		The nomin	al values	of NOx,	СО, НС, а	nd particu	ulates hav	e been mu	ltiplied	by the	,
		factors	1.2	1.8	2.0	1.5	respectiv	ely to ta	ke into	L	
		account m	easuremen	t and eng	ine varia	oility.	if the non	inal valu	es are de	sired,	
		the table	values m	ay be div	ided by t	ne respect	tive facto	rs.	.	L	
		This is C	aterpilla	r's best	estimate (of the em	issions of	your eng	ine.		
		If exact	emissions	data is	required,	an emissi	ions test	will be n	eeded		L
		on your e	ngine.								L

Frontier Discoverer Boilers Emission Factors

Clayton Industries

	TYPICAL GENER	RATOR EM	AISSIONS : LIGHT OIL - #2 DIESEL						August 1, 2001		
	BOILER HORSE POW	ER	150	150 SE	200	200 SE	250	250 SE	300	300 SE	
	ASSUMED EFFICIENC	Y, %	85	87	84	87	84	87	84	87	
	RATED INPUT	(MMBTU/HR)	5.907	5.772	7.970	7.695	9.963	9.619	11.955	11.543	
	FLUE GAS RATE	(SCFM)	1152	1126	1555	1501	1943	1876	2332	2252	
	FLUE GAS RATE	ACFM) 400 F	1891	1848	2552 🦯	2464	3190	3080	3828	3696	
	FLUE GAS RATE	(LBS/HR)	5272	5151	7114	6868	8892	8585	10671	10303	
	EXH STACK DIA.	(IN)	18	18	18	18	24	24	24	24	
	FLUE VELOCITY	(FT/S) 400 F	17.8	17.4	24.1	23.2	16.9	16.3	20.3	19.6	
	NOx	PPMV	150	150	150 -	150	170	170	226	226	
		LBS/DAY	28.5	27.9	38.5	37.1	54.5	52.6	86.9	83.9	
	CO	PPMV	100	100	100	100	100	100	100	100	
		LBS/DAY	11.0	10.1	14.8	14.3	18.5	17.9	22.3	21.5	
note 2	SO2 (est)	PPMV	153	153	153	153	153	153	153	153	
		LB\$/DAY	40	39	54	53	68	66	82	79	
notes 4 & 7	PARTICULATES (est)	LBS/DAY	3.3	3.3	4.5	4.4	5.6	5.4	6.8	6.5	
notes 4	VOC (est)	LB\$/DAY	0.20	0.20	0.27	0.26	0.34	0.33	0.41	0.40	
notes 4 & 8	TOC (est)	LBS/DAY	0.26	0.25	0.34	0.33	0.43	0.42	0.52	0.50	
										and the second se	
	BOILER HORSE POW	ER	350	350 SE	400	400 SE	500	500 SE	600	600 SE	
	ASSUMED EFFICIENC	Y, %	84	87	83	87	83	86	85	87	
	RATED INPUT	(MMBTU/HR)	13.948	13.467	16.133	15.391	20.166	19.462	23.629	23.086	
	FLUE GAS RATE	(SCFM)	2721	2627	3147	3002	3933	3796	4609	4503	
	FLUE GAS RATE	(ACFM) 400 F	4466	4312	5165	4928	6457	6232	7566	7392	
	FLUE GAS RATE	(LBS/HR)	12449	12020	14399	13737	17998	17371	21090	20605	
	EXH STACK DIA.	(IN)	24	24	32	32	32	32	32	32	
	FLUE VELOCITY	(FT/S) 400 F	23.7	22.9	15.4	14.7	19.3	18.6	22.6	22.1	
	NOx	PPMV	230	230	170	170	190	190	250	250	
		LBS/DAY	103.2	99.6	88.2	84.2	123.3	119.0	190.0	185.7	
	co	PPMV	100	100	100	100	100	100	100	100	
		LBS/DAY	26.0	25.1	30.0	28.7	37.5	36.2	44.0	43.0	
note 2	SO2 (est)	PPMV	153	153	153	153	153	153	153	153	
		LBS/DAY	95	92	110	105	138	133	161	158	
notes 4 & 7	PARTICULATES (est)	LBS/DAY	7.9	7.6	9.1	8.7	11.4	11.0	13.4	13.1	
notes 4	VOC (est)	LBS/DAY	0.48	0.46	0.55	0.53	0.69	0.67	0.81	0.79	
notes 4 & 8	TOC (est)	LBS/DAY	0.60	0.58	0.70	0.66	0.87	0.84	1.02	1.00	

NOTES: 1) EMISSION DATA GIVEN FOR MAXIMUM CONTINUOUS FIRING RATE. (15% EXCESS AIR). PPMV VALUES CORRECTED TO 3% O2. 2) VALUES FOR SULFUR DIOXIDE ASSUME: 92.5% CONVERSION FROM SULFUR CONTENT IN FUEL, 0.3% BY WEIGHT .

3) DATA BASED ON 19500 BTU/# LIGHT OIL.

4) ESTIMATED VALUES BASED ON TYPICAL INDUSTRY DATA.

(a) ESTIMATED VALUES ARE TYPICAL ONLY. ACTUAL VALUES WILL VARY WITH ACTUAL OPERATING CONDITIONS.
 (b) CONSULT FACTORY FOR GUARANTEED VALUES.
 (7) APPROXIMATELY 61% FILTERABLE OF WHICH APPROXIMATELY HALF IS PM10. REMAINING 39% IS CONDENSABLE AND LESS THAN ONE MICRON OF WHICH 66% IS INORGANIC.

8) APPROXIMATELY 21% BY WEIGHT IS METHANE.

EMISSION.WQ1 BG TABLE 4

Fennica/Nordica Main Engines Emission Factors

-----Original Message-----From: Niemelä Helena [mailto:Helena.Niemela@finstaship.fi] Sent: Wednesday, October 25, 2006 10:33 AM To: Craik, Keith KM SIEP-EPW Cc: Power, Alan T SEPCO; Kondratjeff Peter Subject: Emissions

Keith,

I trust you have already received this report of Viking's and the information about Fennica's emissions, but I'm still sending them just in case.

Emissions

Engine loads	100 %	75 %	50 %
No _x [g/kWh]	11,5	12	11,5
CO [g/kWh]	0,4	0,45	0,6
THC as CH ₄ [g/kWh]	0,4	0,6	0,8
CO ₂ [g/kWh]	620	620	645
SO ₂ [g/kWh]*	2	2	2
* 0 1 1	0.50/		

* Sulphur content of fuel is 0,5%

Could you please tell me if you have some sort of a plan concerning the emission minimizing in any way? Could you in any way prioritise the emissions? This would help us in order to plan and inquire more information about any possible modifications or installations etc to Fennica.

Regards, Helena

Helena Niemelä FINSTASHIP / Offshore e-mail: <u>helena.niemela@finstaship.fi</u> tel. +358 306 20 7108 mob. +358 46 876 7108

Pt. Barrow Tug Main Engines Emission Factors

EMISSIONS DATA

Gaseous emissions values are WEIGHTED CYCLE AVERAGES and are in compliance with the following non-road regulations:

LOCALITY	AGENCY/LEVEL	MAX LIMITS - g/kw-hr
U.S. (incl Calif)	EPA/TIER-2	CO:3.5 NOx + HC:6.4 PM:0.20

E	EXHAUST STACK DIAMETER	10 IN
V	VET EXHAUST MASS	18,679.7 LB/HR
V	VET EXHAUST FLOW (638.60 F STACK TEMP)	8,754.51 CFM
V	VET EXHAUST FLOW RATE (32 DEG F AND 29.98 IN HG)	3,967.00 STD CFM
Γ	DRY EXHAUST FLOW RATE (32 DEG F AND 29.98 IN HG)	3,633.88 STD CFM
F	FUEL FLOW RATE	74 GAL/HR

RATED SPEED "Not to exceed data"

ENGINE SPEED RPM	PERCENT LOAD	ENGINE POWER BHP	TOTAL NOX (AS NO2) LB/HR	TOTAL CO LB/ HR	TOTAL HC LB/ HR	PART MATTER LB/HR	OXYGEN IN EXHAUST PERCENT	DRY SMOKE OPACITY PERCENT	BOSCH SMOKE NUMBER
1800	100	1502	20.54	1.84	0.70	.180	12.60	1.1	1.28
1800	75	1127	11.14	1.78	0.76	.230	13.20	1.8	1.28
1800	50	751	5.78	2.11	0.73	.270	13.90	2.2	1.28
1800	25	376	4.88	2.76	0.60	.280	15.10	3.5	1.28
1800	10	150	4.00	3.12	0.72	.180	16.60	2.7	1.28

RATED SPEED "Nominal Data"

ENGINE SPEED RPM	PERCENT LOAD	ENGINE POWER BHP	TOTAL NOX (AS NO2) LB/HR	TOTAL CO LB/ HR	TOTAL HC LB/ HR	TOTAL CO2 LB/HR	PART MATTER LB/HR	OXYGEN IN EXHAUST PERCENT	DRY SMOKE OPACITY PERCENT	BOSCH SMOKE NUMBER
1800	100	1502	17.12	1.02	0.53	1,605.2	0.130	12.60	1.1	1.28
1800	75	1127	9.29	0.99	0.57	1,285.4	0.170	13.20	1.8	1.28
1800	50	751	4.81	1.17	0.55	955.9	0.200	13.90	2.2	1.28
1800	25	376	4.07	1.54	0.45	546.9	0.200	15.10	3.5	1.28
1800	10	150	3.33	1.73	0.54	326.2	0.130	16.60	2.7	1.28

http://tmiweb.cat.com/tmi/servlet/cat.edis.tmiweb.gui..tabkey=DM8324&perfnum=DM8324&unittype=E&changelevel= (1 of 16)10/9/2006 3:56:26 PM

INTERMEDIATE SPEED "Not to exceed data"

ENGINE SPEED RPM	PERCENT LOAD	TOTAL NOX (AS NO2) LB/ HR	TOTAL CO LB/ HR	TOTAL HC LB/ HR	PART MATTER LB/HR	O2 IN EXHAUST PERCENT	O2(DRY) SMOKE OPAC PERCENT	O2(DRY) BOSCH SMKE NO.
1350	100	11.13	2.89	0.35	0.230	10.82	2.4	1.28
1350	75	7.42	3.01	0.38	0.230	11.29	3.1	1.28
1350	50	5.31	2.14	0.40	0.130	12.28	2.7	1.28
1350	25	3.82	2.94	0.87	0.110	14.63	1.1	1.28
1350	10	1.96	6.03	2.60	0.350	16.91	0.3	1.28

INTERMEDIATE SPEED "Nominal Data"

ENGINE SPEED RPM	PERCENT LOAD	TOTAL NOX (AS NO2) LB/ HR	TOTAL CO LB/ HR	TOTAL HC LB/ HR	TOTAL CO2 LB/ HR	PART MATTER LB/HR	O2 IN EXHAUST PERCENT	O2(DRY) SMOKE OPAC PERCENT	O2 (DRY) BOSCH SMKE NO.
1350	100	9.27	1.61	0.27	1,340.5	0.160	10.82	2.4	1.28
1350	75	6.18	1.67	0.29	1,058.2	0.160	11.29	3.1	1.28
1350	50	4.42	1.19	0.30	727.4	0.090	12.28	2.7	1.28
1350	25	3.19	1.64	0.65	403.2	0.080	14.63	1.1	1.28
1350	10	1.64	3.35	1.96	226.4	0.250	16.91	0.3	1.28

Altitude Capability Data(Corrected Power Altitude Capability)

Ambient Operating Temp.	50 F	68 F	86 F	104 F	122 F	NORMAL
Altitude						
0 F	1,502	1,502	1,502	1,502	1,502	1,502
	hp	hp	hp	hp	hp	hp
984 F	1,502	1,502	1,502	1,502	1,502	1,502
	hp	hp	hp	hp	hp	hp
1,640 F	1,502	1,502	1,502	1,502	1,502	1,502
	hp	hp	hp	hp	hp	hp
3,281 F	1,502	1,502	1,502	1,502	1,502	1,502
	hp	hp	hp	hp	hp	hp
4,921 F	1,502	1,502	1,502	1,502	1,502	1,502
	hp	hp	hp	hp	hp	hp
6,562 F	1,502	1,502	1,502	1,502	1,502	1,502
	hp	hp	hp	hp	hp	hp
8,202 F	1,502	1,502	1,502	1,502	1,482	1,502
	hp	hp	hp	hp	hp	hp
9,843 F	1,502	1,502	1,483	1,436	1,392	1,502
	hp	hp	hp	hp	hp	hp
10,499 F	1,502	1,495	1,446	1,400	1,356	1,502
	hp	hp	hp	hp	hp	hp

The powers listed above and all the Powers displayed are Corrected Powers

Pt. Barrow Tug Generators Emission Factors

From: Blazevich, Chris [mailto:CBlazevich@NCPowerSystems.com]
Sent: Tuesday, October 17, 2006 8:50 AM
To: Stich, Brian
Cc: Phillips, Mark
Subject: FW: 3304b emissions

Brian,

Here is what I received from Cat on the 3304 generator. Notice that this is a dry manifold and you have a water cooled manifold but I hope this will work for you. Please let me know if you have any other questions.

Best regards,

Chris Blazevich

NC Power Systems CO.

Office 425-251-6438

Cell 425-241-0817

From: McClanahan, Brandon Sent: Tuesday, October 17, 2006 8:07 AM To: Blazevich, Chris Subject: 3304b emissions

*** Vijay Tamma : TU 10/17/2006 08:24 CST ***

Emissions data for wet manifold engine is not available. Below are theestimates based on the dry manifold engine data. Thease are only estimates. If exact values are needed, then an emissions test maybe needed for your engine. Numbers below are at 100% load and are in grams/hour units.

HC - 29

CO - 274

NOx - 1458

PM - 31

Kvichak Work Boats Main Engines Emission Factors

Rated Conditions: Ratings are based upon ISO 8665 and SAE J1228 reference conditions; air pressure of 100 kPa [29.612 in Hg], air temperature 25 deg. C [77 deg. F] and 30% relative humidity. Power is in accordance with IMCI procedure. Member NMMA.

Rated Curves (upper) represents rated power at the crankshaft for mature gross engine performance capabilities obtained and corrected in accordance with ISO 3046. Propeller Curve (lower) is based on a typical fixed propeller demand curve using a 2.7 exponent. Propeller Shaft Power is approximately 3% less than rated crankshaft power after typical reverse/reduction gear losses and may vary depending on the type of gear or propulsion system used.

Fuel Consumption is based on fuel of 35 deg. API gravity at 16 deg. C [60 deg. F0 having LHV of 42,780 kj/kg [18390 Btu/lb] and weighing 838.9 g/liter [7.001 lb/U.S. gal].

Medium Continuous Rating: This power rating is intended for continuous use in variable load applications where full power is limited to six (6) hours out of every twelve (12) hours of operation. Also, reduced power operations must be at or below 200 RPM of the maximum rated RPM. This is an ISO 3046 Fuel Stop Power Rating and is for applications that operate 3,000 hours per year or less.

James D Kahlubub

Marine Engine Performance Data

Curve No.: M-91365 DS-3075 DATE: 01Jan06

General Engine Data				
				QSB5.9-305 MCD
Rating Type				Med. Cont. Duty
Rated Engine Power			kVV [bhp]	224 [300]
Rated Engine Speed			rpm	2600
Rated HP Production Toleran	ce		±%	5
Rated Engine Torque			N•m [ft•lb]	822 [606]
Peak Engine Torque @ 1800	rpm		N•m [ft•lb]	1062 [783]
Brake Mean Effective Pressu	re		kPa [psi]	1755 [255]
Indicated Mean Effective Pres	ssure		kPa [psi]	N/A
Minimum Idle Speed Setting.			rpm	600
Normal Idle Speed Variation			+rom	10
High Idle Speed Range	Minimum		rom	2665
riigh fale opeed Kange	Maximum		rom	2685
Maximum Allowable Engine S	Speed		rom	2685
Maximum Torque Conseity fr	am Eropt of Cropk ²		Nem [ftelb]	469 [245]
				406 [345]
Compression Ratio				17.2.1
Piston Speed			m/sec [ft/min]	10.4 [2045]
Firing Order				1-5-3-6-2-4
Weight (Dry) Engine only - Av	verage		kg [lb]	N.A.
Weight (Dry) Engine With Hea	at Exchanger System	- Average	kg [lb]	612 [1350]
Weight Tolerance (Dry) Engin	e only - Average		kg [lb]	N.A.
Noise and Vibration				
Average Noise Level - Top			dBA @ 1m	76
Average Noise Level - Top		(Iule) (Deted)	dBA @ 1m	07
Average Naise Level Dight	Cida	(raieu)		57
Average Noise Level – Right	Side	(iaie)		70
	·			98
Average Noise Level – Left S	ide	(Idle)	dBA @ 1m	(/
		(Rated)	dBA @ 1m	107
Average Noise Level – Front		(Idle)	dBA @ 1m	76
		(Rated)	dBA @ 1m	98
Fuel System ¹				
Average Fuel Consumption -	ISO 8178 E3Standard	d Test Cycle	l/br [gal/br]	38 7 [10 2]
Fuel Consumption @ Rated 9	Speed		l/br [gal/hr]	57 [15]
Approximate Fuel Flow to Put	mp		l/br [gal/br]	189 [50]
Maximum Allowable Eyel Sun	nly to Pump Tompora	turo	۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	60 [140]
Approximate Fuel Flow Detur	n to Tonk	iure		122 [25]
Approximate Fuel Flow Return				132 [33]
Approximate Fuel Return to T	ank Temperature			66 [150]
Maximum Heat Rejection to L				2 [99]
Fuel Transfer Pump Pressure	Range		kPa [psi]	76 [11]
Fuel Rail Pressure	Gauge		kPa [psi]	N.A.
	INSITE		kPa [psi]	135,999 [19,725]
Air System ¹				
Intake Manifold Pressure			kPa lin Hal	172 [51]
Intake Marillold Fressure				278 [58]
Heat Pointion to Ambient			k\// [Ptu/min]	22 [1810]
Maximum Air Cloanar Inlet To	mooratura Biao Over	Ambiont		17 [20]
	emperature Rise Over	Amplen(
Exhaust System ¹				
Exhaust Gas Flow			l/sec [cfm]	600 [1272]
Exhaust Gas Temperature	Turbine Out		°C [°F]	421 [789]
	Manifold		°C [°F]	559 [1038]
TBD = To Be Decided	N/A = Not A	oplicable	N.A. = Not Available	

¹All Data at Rated Conditions ²Consult Installation Direction Booklet for Limitations

³Heat rejection values are based on 50% water/ 50% ethylene glycol mix and do NOT include fouling factors. If sourcing your own cooler, a service fouling factor should be applied according to the cooler manufacturer's recommendation.
 ⁴Consult option notes for flow specifications of optional Cummins seawater pumps, if applicable.
 ⁵May not be at rated load and speed. Maximum heat rejection may occur at other than rated conditions.

CUMMINS ENGINE COMPANY, INC. COLUMBUS, INDIANA

All Data is Subject to Change Without Notice - Consult the following Cummins intranet site for most recent data:

http://www.cummins.com

Marine Engine Performance Data

Curve No.: M-91365 DS-3075 DATE: 01Jan06

Emissions (in accordance with ISO 8178 Cycle E3)		
NOx (Oxides of Nitrogen)	g/kw·hr [g/hp·hr]	6.227 [4.644]
HC (Hydrocarbons)	g/kw∙hr [g/hp∙hr]	0.104 [0.078]
CO (Carbon Monoxide)	g/kw·hr [g/hp·hr]	0.208 [0.155]
PM (Particulate Matter)	g/kw·hr [g/hp·hr]	0.103 [0.077]
Cooling System ¹		
Sea Water Pump Specifications	B 0.08.17-07/16/2001	
Pressure Cap Rating (With Heat Exchanger Option)	kPa [psi]	103 [15]
Sea Water Aftercooled Engine (SWAC)		
Coolant Flow to Engine Heat Exchanger	l/min [gal/min]	238 [63]
Standard Thermostat Operating Range Start to Open	°C [°F]	74 [165]
Full Open	°C ݰFİ	85 1851
Heat Rejection to Engine Coolant ³	kW [Btu/min]	166 [9470]
Engines with Low Temperature Aftercooling (LTA)		
Single Loop LTA		
Coolant Flow to Cooler (with blocked open thermostat)	l/min [gal/min]	238 [63]
LTA Thermostat Operating Range Start to Open	°C [°F]	66 [150]
Eull Open	°C I°FI	80 [175]
Heat Paiastian to LTA Coolant ³	k\\/ [Ptu/min]	193 [10/20]
Maximum LTA Caslant Daturn Tamparatura		54 [10420]
Maximum LTA Coolant Return Temperature	C[F]	54 [130]

TBD = To Be Decided

N/A = Not Applicable

N.A. = Not Available

1All Data at Rated Conditions

2Consult Installation Direction Booklet for Limitations 3Heat rejection values are based on 50% water/ 50% ethylene glycol mix and do NOT include fouling factors. If sourcing your own cooler, a service fouling factor should be applied according to the cooler manufacturer's recommendation. 4Consult option notes for flow specifications of optional Cummins seawater pumps, if applicable. 5May not be at rated load and speed. Maximum heat rejection may occur at other than rated conditions.

CUMMINS ENGINE COMPANY, INC. COLUMBUS, INDIANA

All Data is Subject to Change Without Notice - Consult the following Cummins intranet site for most recent data:

http://www.cummins.com

Kvichak Skimming Vessel Main Engines Emission Factors

Alaska Diesel Electric

ENGINE EXHAUST EMISSIONS TEST FOR MARPOL 73/78 ANNEX VI NOX LIMITS

Purpose of Test:Verify compliance with MA.Test Date:3/13/00Test Number:Fuel Type: D2Test Cycle: E-3 MarineEngine Type:L6140AL2KCAspiration: TurboSerial #:1401-1920Engine Rating:H.P.70Comments:21deg timingFile NameE-331300-1	RPOL/IMO NOX 1 10 @ RPM	Limit Engine Tech: Emissions Tech Project Leader: 2,100	GW : GW DG	
A. ENGINE PERFORMANCE DATA	Mode 1	Mode 2	Mode 3	Mode 4
MANIFOLD PRESSURE, PSIG	38.1	29.5	15,9	5.2
Engine Torque (ft-lb)	1751	1444	1094	696
Engine Power (bhp)	700	525	350	175
Engine power (kw)	522	392	261	131
Fuel Flow (kg/hr)	125.74	78.72	58.92	29.03
Intake Air (dry kg/hr)	2898	2153	1560	803
Exhaust flow (dry kg/hr)	3023	2231		832
Engine RPM	2100	1910	1680	1320
Engine RPM % of Rated	1.00	0.91	0.80	0.63
Engine Load % of Rated	1.00	0.75	0.50	0.25
BSFC (lbs fuel/bhp-hr)	0.396	0.331	0.371	0.366
Exhaust Gas Temp. (deg F)	754	642	655	603
KC RETURN TEMP, DEG F.	130	130	130	130
B. GASEOUS EMISSIONS FUEL WT1	43	25	44	39
FUEL WT2	29.14	s 15.36	35.34	32.6
NOx (dry ppmv)	930	930	1135	1381
CO (dry ppmv)	226	69		115
O2 (%)	9.7	11.4	11.1	11.5
CO2 (%)	8.4	7.1	7.4	7.1
SMOKE	0.4	0.5	0.2	0.5
C. EXHAUST EMISSIONS ANALYSIS		1.1		
FUELTIME	3	3.333	4	6
Mode Weighting Factors	0.2	0.5	0.15	0.15
Weighted Specific NOx (gms/kw-hr)	2.40	4.44	1.18	0.74
Weighted Specific CO (gms/kw-hr)	0.38	0.09	0.07	0.05

D. RESULTS

Total Mode Weighted NOx	8.76 gms/kw-hr	6.53 gms/bhp-hr
Total Mode Weighted CO	0.59 gms/kw-hr	0.44 gms/bhp-hr

MARPOL NOx Limit PASS/FAIL MARPOL NOX LIMITS 9.8 gms/kw-hr

.

APPENDIX C ADEC Owner Request Limit Forms

Alaska Department of Environmental Conservation Owner Requested Limit Application

ADEC USE ONLY

Receiving Date:

ADEC Control #:

ORL :

STATIONARY SOURCE IDENTIFICATION FORM

Section 1 Stationary Source Information

Stationary Source Name: Frontier Discoverer and associated vessels	3			
Project Name (if different): Frontier Discoverer Exploration Stationary Source Contact: Steve Meehen				
Drilling Program	-			
Source Physical Address:Beaufort Sea OCS Waters	City:Houston State:TX Zip:77002		002	
	Telephone:713-481-7500			
	E-Mail Address:Smeehen	@Frontier-drill.co	m	
UTM Coordinates or Latitude/Langitude:	Northing:	Easting:		Zone:
O TWI Coordinates of Latitude/Longitude.	Latitude:	Longitude:		

Section 2 Legal Owner			Section 3 Operator (if different from owner)			
Name:Frontier Drilling USA, Inc		Name:Shell Offshore, Inc.				
Mailing Address:1000 Louisiana, Suite 1210		Mailing Address:701 Poydras Street				
City:Houston	State:TX	Zip:77002	City:New O	rleans	State:LA	Zip:70139
Telephone #:713-481-7500			Telephone #	:504-728-7673		
E-Mail Address:Smeehen@H	Frontier-drill.com	n	E-Mail Address:Robert.McAlister@Shell.com			

Continue A Destanded A cont (C c

Section 4 Designated Age	nt (for service	of pi	rocess)	Section 5	Billing Contact Pe	rson (if different	from owner)
Name: ASRC Energy Services, RTS		Name:					
Mailing Address: 3900 C Street, Suite 601		Mailing Address:					
City Anchorage	State:AK		Zip:99503	City:		State:	Zip:
Physical Address:Same		Telephone #:					
City:	State:	Zij	p:	E-Mail Add	dress:		
Telephone #:907-339-5486							
E-Mail Address:Greg.Horner@asrecenergy.com							

Section 6 Application Contact

Name:Wayne Wooster, Air Sciences, Inc.			
Mailing Address:421 SW 6th Ave Ste 1400	City:Portland	State:OR	Zip:97204
	Telephone:503-525-9394 ext. 15		
	E-Mail Address:wwo	oster@airsci.com	

OWNER REQUESTED LIMIT IDENTIFICATION FORM

Section 7 Certification

This certification applies to the Air the	Quality Control Owner Requested Limit Application for	Discoverer
submitted to the department on:	12/29/06 .	(Stationary Source Name)

Type of Application

Initial Application

Change to Initial Application

The application is **NOT** complete unless the certification of truth, accuracy, and completeness on this form bears the **signature of a responsible official** of the firm making the application. (18 AAC 50.205)

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS

"Based on information and belief formed after reasonable inquiry, I certify that the statements and information in and attached to this document are true, accurate, and complete."

Signature:	Date:12/29/06
Printed Name: Susan Childs	Title:Regulatory Coordinator, Alaska

Section 13 Attachments

Attachments Included.	List attachments:	Fuel use limitations
		Fuel sulfur content limitation

APPENDIX D 40 CFR Part 55 NOI Letters

40 CFR 55.4 Requirements to Submit a Notice of Intent

Notice of Intent (NOI) to submit an Application for Preconstruction Permit Frontier Discoverer 2007-2009 Beaufort Sea Exploratory Drilling Program

Shell Offshore, Inc. (SOI) hereby submits the information below pursuant to the 40 CFR Part 55 Outer Continental Shelf (OCS) Air Regulations, Section 55.4 Requirements to submit a notice of intent. Paragraph 55.4(b) lists nine specific requirements for exploratory sources to include in the notice of intent (NOI). Each of the requirements is paraphrased below followed by SOI's response.

Requirement No. 1 - 40 CFR 55.4(b)(1): General company information.

The pertinent owner, owner's agent, operator, and facility contact information is presented in Table 1.

Owner	
Name	Frontier Drilling USA, Inc.
Address	1000 Louisiana, Suite 1210, Houston, TX 77002
Contact	Steve Meehen
Contact phone number	(713) 481-7500
Contact e-mail address	smeehen@frontier-drill.com
Operator	
Name	Shell Offshore, Inc.
Address	701 Poydras Street, New Orleans, LA 70139
Contact	Keith Craik
Contact phone number	(713) 546-6669
Contact e-mail address	keith.craik@shell.com
Agent	
Name	ASRC Energy Services, RTS
Address	3900 C Street, Suite 601, Anchorage, AK 99503
Contact	Greg Horner
Contact phone number	(907) 339-5486
Contact e-mail address	greg.horner@asrcenergy.com

Table 1: Company and Operator Information

Requirement No. 2 - 40 CFR 55.4(b)(2): Facility description.

The Frontier Discoverer Exploratory Drilling Program will be an exploration project conducting exploratory oil and gas drilling operations (North American Industry Classification System

Frontier Discoverer NOI December 28, 2006 Page 1 of 1 [NAICS] code 211111 Crude Petroleum and Natural Gas Extraction) on SOI's oil and gas leaseholdings on federal OCS waters located in the Beaufort Sea. The proposed drilling sites are located on federal OCS waters between longitude 144 degrees W and longitude 151 degrees W. SOI's leases in the Beaufort Sea exist, at their closest point, approximately nine miles north of Point Thomson shoreline and five miles northwest of Barter Island shoreline for the eastern leaseholding locations, and twelve miles north of Anachlik Island shoreline for the western leaseholding locations.

The project is scheduled to last three drilling seasons (2007, 2008, and 2009) lasting up to 120 days per calendar year, weather and ice conditions permitting. SOI anticipates drilling operations per drill site will range from 30 to 60 days. SOI, therefore, anticipates drilling up to three drill site locations per year. The drilling season is projected to run from approximately August 1 through November 30 each year, again weather and ice conditions permitting SOI intends to conduct a three-year exploratory drilling program, 2007 through 2009, although drilling activity may occur in 2010 and 2011 if ice conditions prevent significant exploratory drilling activity in 2007, 2008, or 2009. The project is scheduled to begin in mid-to-late July 2007 and end December 1, 2009, but may extend into 2010 and 2011 if ice and weather conditions limit the extent of drilling in 2007, 2008, or 2009.

The Frontier Discoverer Exploratory Drilling Program will consist of several vessels. The primary exploration drilling activities will be conducted from the Frontier Discoverer, a self-propelled drilling vessel. The Frontier Discoverer will be supported by a number of associated support vessels. The associated support vessels will include two icebreaker vessels, a re-supply ship, and an oil spill response (OSR) fleet. The Kapitan Dranitsyn will perform primary ice management duty (icebreaking). The Fennica or its identical sister vessel, the Nordica, will assist the Kapitan Dranitsyn with ice management duty in 2007 through 2009. The Jim Kilabuk will serve as the re-supply vessel. The OSR fleet will consist of one larger OSR vessel and a number of smaller boats. Photographs and diagrams of the Frontier Discoverer and associated support vessels will be provided in the air permit application.

The exploratory drilling process consists of three phases, rig placement, drilling operations, and rig removal. The Frontier Discoverer will sail to the Beaufort Sea along with its supporting icebreaker vessels to the SOI lease-holding OCS drill site. One of the icebreakers will assist the Frontier Discoverer to maneuver and anchor it to the seabed and will then move away from the Frontier Discoverer to perform ice management duty. The Frontier Discoverer will perform its drilling operations and at operation completion of that drill site one of the icebreaker vessels will assist the Frontier Discoverer to pull anchors, sail with the Frontier Discoverer to the next drill site location, and then assist in the anchoring and ice management duty as described above. Meanwhile, the Jim Kilabuk will re-supply the Frontier Discoverer every two to three weeks. The

Frontier Discoverer NOI December 28, 2006 Page 2 of 2 Frontier Discoverer OSR fleet will be stationed nearby the Frontier Discoverer in case of a spill and will conduct oil spill drill response exercises. At the end of the drilling season the two icebreaker vessels will assist the Frontier Discoverer to pull anchors and then sail out of the Arctic theater to Southeast Asia or other off-season operating location. A complete facility description will be provided in the air permit application.

Requirement No. 3 - 40 CFR 55.4(b)(3): Estimate of the proposed project's potential emissions (PTE).

Following September 2006, EPA Region 10 (EPA) guidance SOI has defined the Frontier Discoverer drilling vessel, when anchored or otherwise attached to the seabed at each drill site, as a separate "stationary source." EPA's September 2006 guidance further requires that the emissions from the project's associated support vessels be included in the "source" potential-to-emit (PTE) when the support vessels are within 25 miles of the anchored drilling vessel. These guidance interpretations are consistent with the OCS source definition found in 40 CFR 55.2. SOI intends to operate the Frontier Discoverer and its associated support vessels as a synthetic minor source that will not exceed 250 tons per drilling site per year of any new source review regulated air contaminant. The project's primary air contaminant is nitrogen oxides (NO₂) with lesser quantities of carbon monoxide (CO), small-diameter particulate matter (PM_{10}) , volatile organic compounds (VOC), and sulfur dioxide (SO₂). The project's potential emissions will vary depending on the length of the drilling operations per drill site, the compliment of ice management vessels employed, and the severity of the ice conditions surrounding the drill site. For example, SOI estimates the Frontier Discoverer drilling vessel for a 43-day drilling operation will result in approximately 52 tons NO_x. The associated support vessels NO_x emissions may approach 193 tons, again depending on the icebreaker vessels combination employed and the severity of the ice conditions surrounding the Frontier Discoverer drilling vessel. The 2007 emissions estimated based on a 43-day drill site are presented in Table 2.

Table 2:	Frontier	Discoverer	2007 Emiss	ions Estimate	e (Based o	n Projected	43-Day Dri	ll Site
Operatio	n)							

	NO _x	СО	PM ₁₀	VOC	SO ₂
Emissions	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)
Frontier Discoverer	51.8	6.7	1.7	0.9	4.7
Kapitan Dranits yn	107.6	37.1	3.4	7.3	7.1
Nordica Emissions	80.5	2.9	1.7	2.8	5.4
Frontier Discoverer OSR Fleet	3.9	1.0	0.1	0.8	0.4
Jim Kilabuk	1.2	0.3	0.03	0.1	0.1
Total	245.0	47.9	7.0	11.8	17.7

Frontier Discoverer NOI December 28, 2006 Page 3 of 3 SOI intends to limit drill operations at each drilling site (e.g., a fleet-wide fuel consumption limit) to ensure that no air contaminant exceeds 250 tons per year, i.e., a synthetic minor new source. SOI will accept federally enforceable operational limits to stay below the 250-ton-per-year major new source review threshold value.

Requirement No. 4 – 40 CFR 55.4(b)(4): Description of all emission points including associated vessels.

A complete description of the Frontier Discoverer Exploratory Drilling Program vessels, combustion sources identification, size rating, emission factor, hourly emissions, and project site yearly emissions will be provided in the air permit application. However, the dominant emission source for the project is the associated support vessel main propulsion engines. The support vessel main propulsion engines/electrical generators and auxiliary engines account for 98 percent to more than 99 percent of the support vessel emissions. As for the drilling vessel itself, the Frontier Discoverer propulsion engine, main drilling engines and deck cranes account for 95 percent to more than 98 percent of the drilling vessel emissions. All of the Frontier Discoverer and the associated marine support vessels combustion sources will consist of marine/non-road compression-ignition internal combustion engines, boilers, and heaters. All of these combustion sources will be diesel fuel fired. The engines will have the purpose of generating electricity, pumping, compressing, providing direct drive mechanical power, and for powering mobile machinery. SOI intends to collect generated on-site trash for off-site disposal/management and/or for incineration on one of the icebreaker incinerators. SOI does not intend to burn trash in the Frontier Discoverer's on-site trash incinerator. Nor does SOI intend to flare drilling well off-gases during the project.

Requirement No. 5 – 40 CFR 55.4(b)(5): Estimate of quantity and type of fuels and raw materials to be used.

The estimated diesel fuel consumption for the 43-day drilling operation described above is presented in Table 3.

Table 3: Frontier Discoverer Exploratory Drilling Program Diesel Fuel Consumption Estimate (Based on Projected 43-Day Drill Site Operation)

Material	Quantity	Units
Frontier Discoverer drilling vessel diesel fuel	0.36	Million gallons
Associated support vessels diesel fuel	1.07	Million gallons
Total Frontier Discoverer Exploratory Drilling Program diesel fuel	1.43	Million gallons

Frontier Discoverer NOI December 28, 2006 Page 4 of 4

Requirement No. 6 – 40 CFR 55.4(b)(6): Description of proposed air pollution control equipment.

No add-on air pollution control equipment is being proposed for any of the Frontier Discoverer Exploratory Drilling Program emission sources.

Requirement No. 7 – 40 CFR 55.4(b)(7): Proposed limitations on source operations or any work practice standards affecting emissions.

SOI, since all combustion sources are diesel fuel fired, proposes to limit the project drill site emissions to less than 250 tons by monitoring diesel fuel consumption on each project vessel: the Frontier Discoverer drilling vessel, each of the icebreaker vessels, the re-supply vessel, and the combined OSR fleet. SOI proposes to calculate emissions from each vessel's fuel consumption by using an assigned vessel-wide emission factor (e.g., the icebreaker vessel main propulsion engine emission factor – lb/hp-hr), multiplied by fuel consumption and EPA AP42 average brake specific fuel consumption and diesel fuel heating values. SOI will then sum each vessel's emissions to determine the project fleet-wide emissions running total. SOI proposes to implement fuel consumption monitoring on each project vessel on a monthly and as necessary, a weekly basis, to ensure that the project-wide fuel consumption limits emissions to less than 250 tons per drill site per year. SOI believes the fleet-wide diesel fuel consumption can easily be monitored and documented. Fuel consumption can be measured weekly or daily, as necessary, by dipstick in the fuel tanks and documented as part of the operations procedures. SOI may need to install fuel meters on some of the emission sources.

Requirement No. 8 - 40 CFR 55.4(b)(8): Other information affecting emissions.

In March 2006, SOI and its contractors, ASRC Energy Services, RTS, and Air Sciences Inc., discussed with the EPA Region 10 staff the choice of an approved air quality model. EPA directed SOI and Air Sciences to model the project emissions with a conservative screening model, SCREEN3. The SCREEN3 model (which incorporates worst-case assumptions) frequently overestimates real-world impacts from the project. SOI will model the project emissions to demonstrate compliance with applicable air quality standards. SOI will include the modeled source characterization (i.e., short-term emission rate, stack heights, stack diameter, stack height, exit velocity, and temperature, etc.), model selection, meteorological data, background concentrations, evaluation methodology, and modeling results in the air permit application. In addition, SOI intends to obtain at least a 500-meter Safety Exclusion Zone from the United States Coast Guard to help keep non-project related people and vessels a safe distance away from the drilling vessel. SOI will model the project emissions to the 500-meter Safety Exclusion Zone as

Frontier Discoverer NOI December 28, 2006 Page 5 of 5 the point of ambient air. SOI will provide a copy of the United States Coast Guard Safety Exclusion Zone application to EPA under a separate cover letter from the air permit application.

Requirement No. 9 – 40 CFR 55.4(b)(9): Such other information as may be necessary to determine the applicability of onshore requirements.

The Corresponding Onshore Area (COA) for the Frontier Discoverer project is the Northern Alaska Intrastate Air Quality Control Region that has been classified by the Alaska Department of Environmental Conservation (ADEC) as Air Quality Class II area. ADEC suggested using the background ambient air quality concentrations measured at the Arctic North Slope Eastern Region (ANSER) for ambient air quality modeling purposes. SOI concurs with ADEC's recommendation that the ANSER background ambient air quality concentration is appropriate since no significant growth activity has occurred in the nearby areas of the western or eastern SOI lease-holding OCS blocks.

Frontier Discoverer NOI December 28, 2006 Page 6 of 6

APPENDIX E Modeling Calculations and SCREEN3 Model Output

Shell Discoverer - Beuafort Sea, Alaska Modeling Calculations 12/13/2006

	Distance		Max. Modeled X/Q (µg*s/m ³ *g)			
Averaging Period >	(m)	1-hour	3-hour	8-hour	24-hour	Annual
Drill Rig: Discoverer						
Stack #1: 6 Main Drilling Engines	500 ^A	19.75	17.78	13.83	7.90	1.58
Stack #2: 2 Air Compressors	500 ^A	216.10	194.49	151.27	86.44	17.29
Stack #3: 2 HPP Engines	500 ^A	274.40	246.96	192.08	109.76	21.95
Stack #4: 2 Diesel Crane Engines	500 ^A	216.30	194.67	151.41	86.52	17.30
Stack #5: 2 Heat Boilers	500 ^A	109.50	98.55	76.65	43.80	8.76
Stack #6: 1 Logging Winch	500 ^A	452.80	407.52	316.96	181.12	36.22
Support Vessels: Discoverer Fleet						
Kapitan Dranitsyn	13,500 ^B	0.4102	0.37	0.29	0.16	0.03
Fennica/Nordica	6,000 ^C	1.041	0.94	0.73	0.42	0.08
Oil Response Ships - Discoverer	500 ^A	56.84	51.16	39.79	22.74	4.55
Jim Kilabuk - Discoverer	500 ^A	56.84	51.16	39.79	22.74	4.55

^A Distance to exclusion zone (i.e. ambient air boundary).

^B Center of primary icebreaker ice management activity to point of maximum impact.

^C Center of secondary icebreaker ice management activity to point of maximum impact.

	t (g/soc)				Max. Modeled X/Q				Max. Modeled Impact								
Course H		# 611	1	2 h	(g/sec)	24 h a	A	1	(2 h	µg*s/m³*g) 24 h	A	1	2 1	(μg/m ³)	04 h	A
Source II)	Stacks	1-nour	3-hour	8-nour	24-nour	Annual	1-nour	3-hour	8-hour	24-hour	Annual	1-nour	3-hour	8-hour	24-hour	Annual
Drill Rig: Discoverer																	
Stack #1: 6 Main Drilling F	ngines	1					1 93E+00					1.58					31
Stack #2: 2 Air Compresso	rs	1					1.02E-01					17 29					18
Stack #3: 2 HPP Engines		1					5 54F-01					21.95					12.2
Stack #4: 2 Diesel Crane Fi	orines	1					3.52E-01					17.30					61
Stack #5: 2 Heat Boilers	-Brices	1					4 98E-02					8 76					0.4
Stack #6: 1 Logging Winch		1					6.74E-02					36.22					2.4
Support Vessels: Discove	rer Fleet	-															
Kapitan Dranitsyn		1					1.09E+01					0.03					0.4
Fennica/Nordica		- 1					8 13E+00					0.08					0.7
Oil Response Ships - Disco	verer	1					2.35E+00					4.55					10.7
lim Kilabuk - Discoverer		1					2.82E+00					4.55					12.8
Jini Tuluo un Dioco Verer		*					2.022.00				NOx Tota	1 Impact >					50.5
																	00.0
PM 10																	
Drill Rig: Discoverer																	
Stack #1: 6 Main Drilling E	ngines	1				4.92E-01	6.07E-02				7.90	1.58				3.9	0.1
Stack #2: 2 Air Compresso	rs	1				4.15E-02	5.11E-03				86.44	17.29				3.6	0.1
Stack #3: 2 HPP Engines		1				3.19E-01	3.93E-02				109.76	21.95				35.0	0.9
Stack #4: 2 Diesel Crane Ei	ngines	1				2.02E-01	2.49E-02				86.52	17.30				17.5	0.4
Stack #5: 2 Heat Boilers	0	1				4.72E-02	5.82E-03				43.80	8.76				2.1	0.1
Stack #6: 1 Logging Winch		1				3.88E-02	4.78E-03				181.12	36.22				7.0	0.2
Support Vessels: Discove	rer Fleet																
Kapitan Dranitsyn		1				1.86E+00	2.29E-01				0.16	0.03				0.3	0.01
Fennica/Nordica		1				1.42E+00	1.75E-01				0.42	0.08				0.6	0.01
Oil Response Ships - Disco	verer	1				4.06E-01	5.00E-02				22.74	4.55				9.2	0.2
Jim Kilabuk - Discoverer		1				4.45E-01	5.48E-02				22.74	4.55				10.1	0.2
											PM 10 Tota	l Impact >				89.3	2.2
SO ₂																	
Drill Rig: Discoverer																	
Stack #1: 6 Main Drilling F	ngines	1		1.49E+00		1.49E+00	1.84E-01		17.78		7.90	1.58		26.5		11.8	0.3
Stack #2: 2 Air Compresso	rs	1		1.94E-01		1.94E-01	2.39E-02		194.49		86.44	17.29		37.7		16.7	0.4
Stack #3: 2 HPP Engines		1		2.23E-01		2.23E-01	2.75E-02		246.96		109.76	21.95		55.0		24.4	0.6
Stack #4: 2 Diesel Crane Er	ngines	1		1.41E-01		1.41E-01	1.74E-02		194.67		86.52	17.30		27.5		12.2	0.3
Stack #5: 2 Heat Boilers		1		5.49E-02		5.49E-02	6.77E-03		98.55		43.80	8.76		5.4		2.4	0.1
Stack #6: 1 Logging Winch		1		2.71E-02		2.71E-02	3.34E-03		407.52		181.12	36.22		11.0		4.9	0.1
Support Vessels: Discove	rer Fleet																
Kapitan Dranitsyn		1		5.71E+00		5.71E+00	7.04E-01		0.37		0.16	0.03		2.1		0.9	0.02
Fennica/Nordica		1		4.38E+00		4.38E+00	5.40E-01		0.94		0.42	0.08		4.1		1.8	0.04
Oil Response Ships - Disco	verer	1		1.93E+00		1.93E+00	2.38E-01		51.16		22.74	4.55		98.6		43.8	1.1
Jim Kilabuk - Discoverer		1		1.45E+00		1.45E+00	1.79E-01		51.16		22.74	4.55		74.2		33.0	0.8
											SO ₂ Tota	l Impact >		342.2		152.1	3.8

Stack #1: 6 Main Engines - MAINENGS

12/11/06 12:14:24

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS: SOURCE TYPE = POINT EMISSION RATE (G/S) = 1.00000 STACK HEIGHT (M) = 17.4000 STK INSIDE DIAM (M) = .3500 STK EXIT VELOCITY (M/S) = 63.3000 STK GAS EXIT TEMP (K) = 498.0000 AMBIENT AIR TEMP (K) = 273.0000 RECEPTOR HEIGHT (M) = .0000 URBAN/RURAL OPTION = RURAL BUILDING HEIGHT (M) = 10.6700 MIN HORIZ BLDG DIM (M) = 21.3400 MAX HORIZ BLDG DIM (M) = 156.6700

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 8.589 M**4/S**3; MOM. FLUX = 67.269 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
500.	19.75		8.0	8.7	2560.0	29.77	36.32	24.71	HS
600.	17.28	4	8.0	8.7	2560.0	29.77	42.86	27.42	HS
700.	15.58	3	2.5	2.6	800.0	58.08	75.39	45.63	NO
800.	15.23	4	5.0	5.4	1600.0	37.18	55.86	27.37	NO
900.	14.78	4	4.5	4.9	1440.0	39.38	62.20	30.13	NO
1000.	14.30	4	4.0	4.3	1280.0	42.13	68.49	32.86	NO
1100.	13.68	4	3.5	3.8	1120.0	45.66	74.75	35.07	NO
1200.	13.06	4	3.5	3.8	1120.0	45.66	80.84	36.98	NO
1300.	12.52	4	3.0	3.3	960.0	50.37	87.03	39.15	NO
1400.	12.03	4	3.0	3.3	960.0	50.37	93.03	40.96	NO
1500.	11.52	4	3.0	3.3	960.0	50.37	98.99	42.72	NO
1600.	11.10	4	2.5	2.7	800.0	56.97	105.10	44.89	NO
1700.	10.73	4	2.5	2.7	800.0	56.97	110.98	46.56	NO
1800.	10.35	4	2.5	2.7	800.0	56.97	116.83	48.21	NO
1900.	10.08	5	1.0	1.2	10000.0	73.13	92.73	36.12	NO
2000.	10.43	5	1.0	1.2	10000.0	73.13	97.01	37.08	NO
2100.	10.65	5	1.0	1.2	10000.0	73.13	101.29	37.94	NO
2200.	10.83	5	1.0	1.2	10000.0	73.13	105.54	38.78	NO
2300.	10.97	5	1.0	1.2	10000.0	73.13	109.78	39.61	NO
2400.	11.08	5	1.0	1.2	10000.0	73.13	114.01	40.43	NO
2500.	11.16	5	1.0	1.2	10000.0	73.13	118.22	41.24	NO
2600.	11.22	5	1.0	1.2	10000.0	73.13	122.41	42.04	NO
2700.	11.25	5	1.0	1.2	10000.0	73.13	126.59	42.82	NO
2800.	11.27	5	1.0	1.2	10000.0	73.13	130.76	43.60	NO
2900.	11.26	5	1.0	1.2	10000.0	73.13	134.91	44.37	NO
3000.	11.24	5	1.0	1.2	10000.0	73.13	139.05	45.12	NO
3500.	10.95	5	1.0	1.2	10000.0	73.13	159.55	48.78	NO
4000.	10.48	5	1.0	1.2	10000.0	73.13	179.76	52.25	NO
4500.	10.49	6	1.0	1.4	10000.0	61.97	133.11	34.97	NO
5000.	10.41	6	1.0	1.4	10000.0	61.97	146.23	36.50	NO
5500.	10.24	6	1.0	1.4	10000.0	61.97	159.20	37.96	NO

6000.10.0361.01.410000.061.97172.0539.35NO6500.9.78861.01.410000.061.97184.7840.69NO7000.9.52761.01.410000.061.97197.4041.98NO7500.9.22561.01.410000.061.97209.9243.09NO8000.8.92961.01.410000.061.97222.3544.16NO8500.8.64361.01.410000.061.97234.6945.19NO9000.8.36761.01.410000.061.97246.9446.19NO9500.8.10161.01.410000.061.97259.1147.16NO10000.7.84661.01.410000.061.97271.2048.10NO15000.5.85461.01.410000.061.97388.6456.34NO20000.4.58461.01.410000.061.97501.1161.62NO MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 500. 19.75 4 8.0 8.7 2560.0 29.77 36.32 24.71 HS DWASH= MEANS NO CALC MADE (CONC = 0.0)DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ************ *** REGULATORY (Default) *** PERFORMING CAVITY CALCULATIONS WITH ORIGINAL SCREEN CAVITY MODEL (BRODE, 1988) ***** *** CAVITY CALCULATION - 2 *** *** CAVITY CALCULATION - 1 *** *** CAVITY CALCULATION - 2 *** CONC (UG/M**3) = .0000 CRIT WS @10M (M/S) = 99.99 CRIT WS @ HS (M/S) = 99.99 DILUTION WS (M/S) = 99.99 CAVITY HT (M) = 10.67 CAVITY LENGTH (M) = 24.90 ALONGWIND DIM (M) = 156.67 CONC (UG/M**3) = .0000 CRIT WS @10M (M/S) = 99.99

 CRIT WS @ HS (M/S) =
 99.99

 DILUTION WS (M/S) =
 99.99

 CAVITY HT (M) =
 11.94

 CAVITY LENGTH (M) =
 58.70

 ALONGWIND DIM (M) = 21.34ALONGWIND DIM (M) = 156.67 CAVITY CONC NOT CALCULATED FOR CRIT WS > 20.0 M/S. CONC SET = 0.0 END OF CAVITY CALCULATIONS ***** ***** *** SUMMARY OF SCREEN MODEL RESULTS *** ****** MAX CONC DIST TO TERRAIN (UG/M**3) MAX (M) HT (M) CALCULATION PROCEDURE ----------_____ SIMPLE TERRAIN 19.75 500. 0. ** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

Stack #2: 2 Air Compressors - COMPENGS

12/11/06 12:14:25

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS:		
SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	1.00000
STACK HEIGHT (M)	=	7.0100
STK INSIDE DIAM (M)	=	.2100
STK EXIT VELOCITY (M/S)) =	40.0000
STK GAS EXIT TEMP (K)	=	699.8000
AMBIENT AIR TEMP (K)	=	273.0000
RECEPTOR HEIGHT (M)	=	.0000
URBAN/RURAL OPTION	=	RURAL
BUILDING HEIGHT (M)	=	10.6700
MIN HORIZ BLDG DIM (M)	=	21.3400
MAX HORIZ BLDG DIM (M)	=	156.6700

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.

THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 2.637 M**4/S**3; MOM. FLUX = 6.882 M**4/S**2.

*** FULL METEOROLOGY ***

***** *** SCREEN AUTOMATED DISTANCES *** *********

*** TERRAIN HEIGHT OF $\hfill 0.$ M above stack base used for following distances ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
 500	216 1	 6	25		10000 0	18 35	17 97		 SS
600	189.2	6	2.5	2.5	10000.0	18.35	21.24	15.02	SS
700	168.0	6	2.5	2.5	10000.0	18.35	24.46	15.86	SS
800.	154.1	6	2.0	2.0	10000.0	20.86	27.63	16.04	SS
900	142.5	6	2.0	2.0	10000.0	20.86	30.78	16.84	SS
1000.	132.2	6	2.0	2.0	10000.0	20.86	33.88	17.62	SS
1100.	123.0	6	2.0	2.0	10000.0	20.86	36.96	18.38	SS
1200.	116.5	6	1.5	1.5	10000.0	24.71	40.01	18.31	SS
1300.	111.6	6	1.5	1.5	10000.0	24.71	43.04	19.05	SS
1400.	106.8	6	1.5	1.5	10000.0	24.71	46.05	19.78	SS
1500.	102.1	6	1.5	1.5	10000.0	24.71	49.03	20.49	SS
1600.	97.62	6	1.5	1.5	10000.0	24.71	51.99	21.19	SS
1700.	92.44	б	1.5	1.5	10000.0	24.71	54.94	21.23	SS
1800.	88.59	6	1.5	1.5	10000.0	24.71	57.87	21.87	SS
1900.	84.88	6	1.5	1.5	10000.0	24.71	60.78	22.45	SS
2000.	83.19	6	1.0	1.0	10000.0	31.33	63.68	22.20	SS
2100.	81.52	6	1.0	1.0	10000.0	31.33	66.56	22.77	SS
2200.	79.77	6	1.0	1.0	10000.0	31.33	69.42	23.33	SS
2300.	77.99	б	1.0	1.0	10000.0	31.33	72.28	23.87	SS
2400.	76.19	6	1.0	1.0	10000.0	31.33	75.12	24.41	SS
2500.	74.40	6	1.0	1.0	10000.0	31.33	77.95	24.94	SS
2600.	72.61	6	1.0	1.0	10000.0	31.33	80.76	25.46	SS
2700.	70.85	6	1.0	1.0	10000.0	31.33	83.57	25.97	SS
2800.	69.12	6	1.0	1.0	10000.0	31.33	86.36	26.47	SS
2900.	67.43	6	1.0	1.0	10000.0	31.33	89.15	26.97	SS
3000.	65.48	б	1.0	1.0	10000.0	31.33	91.92	27.07	SS
3500.	57.99	6	1.0	1.0	10000.0	31.33	105.65	29.06	SS
4000.	51.71	6	1.0	1.0	10000.0	31.33	119.17	30.91	SS
4500.	46.44	6	1.0	1.0	10000.0	31.33	132.50	32.65	SS
5000.	41.99	6	1.0	1.0	10000.0	31.33	145.67	34.28	SS
5500.	38.20	6	1.0	1.0	10000.0	31.33	158.69	35.82	SS
6000.	34.96	6	1.0	1.0	10000.0	31.33	171.58	37.30	SS
6500.	32.15	6	1.0	1.0	10000.0	31.33	184.34	38.71	SS
7000.	29.73	6	1.0	1.0	10000.0	31.33	196.99	40.00	SS
7500.	27.63	6	1.0	1.0	10000.0	31.33	209.54	41.16	SS
8000.	25.77	6	1.0	1.0	10000.0	31.33	221.98	42.28	SS
8500.	24.13	6	1.0	1.0	10000.0	31.33	234.34	43.36	SS
9000.	22.67	6	1.0	1.0	10000.0	31.33	246.61	44.40	SS
9500.	21.35	6	1.0	1.0	10000.0	31.33	258.79	45.41	SS
10000.	20.17	б	1.0	1.0	10000.0	31.33	270.90	46.38	SS

15000.12.6961.01.0 10000.031.33388.4354.8820000.9.20861.01.0 10000.031.33500.9560.29 SS SS MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 500. 216.1 6 2.5 2.5 10000.0 18.35 17.97 14.16 SS DWASH= MEANS NO CALC MADE (CONC = 0.0)DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ************ *** REGULATORY (Default) *** PERFORMING CAVITY CALCULATIONS WITH ORIGINAL SCREEN CAVITY MODEL (BRODE, 1988) *** CAVITY CALCULATION - 1 ***
CONC (UG/M^{*3}) = 210.8
CRIT WS @10M (M/S) = 3.78
CRIT WS @10M (M/S) = 5.04
CRIT WS @ HS (M/S) = 3.78
DILUTION WS (M/S) = 1.89
DILUTION WS (M/S) = 2.52
CAVITY HT (M) = 11.94
CAVITY LENGTH (M) = 21.34*** CAVITY CALCULATION - 2 ***
CONC (UG/M^{*3}) = 1161.
CRIT WS @10M (M/S) = 5.04
DILUTION WS (M/S) = 2.52
CAVITY HT (M) = 10.67
CAVITY LENGTH (M) = 21.34 ****** END OF CAVITY CALCULATIONS ****** ***** *** SUMMARY OF SCREEN MODEL RESULTS *** ****** CALCULATION MAX CONC DIST TO TERRAIN PROCEDURE (UG/M**3) MAX (M) HT (M) _____ _____ _____ SIMPLE TERRAIN 216.1 500. 0. -- (DIST = CAVITY LENGTH) BLDG, CAVITY-1 59. 210.8 BLDG. CAVITY-2 1161. 25. -- (DIST = CAVITY LENGTH)

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

Stack #3: 2 HPP Engines - HPPENGS

12/11/06 12:14:25

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS:		
SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	1.00000
STACK HEIGHT (M)	=	7.0100
STK INSIDE DIAM (M)	=	.1800
STK EXIT VELOCITY (M/S	S)=	40.0000
STK GAS EXIT TEMP (K)	=	700.0000
AMBIENT AIR TEMP (K)	=	273.0000

RECEPTOR HEIGHT (M)=.0000URBAN/RURAL OPTION=RURALBUILDING HEIGHT (M)=10.6700MIN HORIZ BLDG DIM (M)=21.3400MAX HORIZ BLDG DIM (M)=156.6700

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 1.938 M**4/S**3; MOM. FLUX = 5.054 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3) STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
500.	274.4	 6	2.0	2.0	10000.0	18.05	17.97	13.91	SS
600.	240.6	б	2.0	2.0	10000.0	18.05	21.24	14.78	SS
700.	213.7	6	2.0	2.0	10000.0	18.05	24.46	15.62	SS
800.	193.2	6	1.5	1.5	10000.0	21.34	27.63	15.60	SS
900.	180.5	б	1.5	1.5	10000.0	21.34	30.78	16.41	SS
1000.	168.7	6	1.5	1.5	10000.0	21.34	33.88	17.20	SS
1100.	157.9	6	1.5	1.5	10000.0	21.34	36.96	17.98	SS
1200.	148.0	б	1.5	1.5	10000.0	21.34	40.01	18.73	SS
1300.	138.9	б	1.5	1.5	10000.0	21.34	43.04	19.46	SS
1400.	131.8	б	1.0	1.0	10000.0	27.11	46.05	19.05	SS
1500.	128.3	6	1.0	1.0	10000.0	27.11	49.03	19.78	SS
1600.	124.5	6	1.0	1.0	10000.0	27.11	51.99	20.49	SS
1700.	120.6	6	1.0	1.0	10000.0	27.11	54.94	21.19	SS
1800.	114.9	6	1.0	1.0	10000.0	27.11	57.87	21.30	SS
1900.	111.2	6	1.0	1.0	10000.0	27.11	60.78	21.93	SS
2000.	107.5	6	1.0	1.0	10000.0	27.11	63.68	22.51	SS
2100.	103.9	6	1.0	1.0	10000.0	27.11	66.56	23.07	SS
2200.	100.5	6	1.0	1.0	10000.0	27.11	69.42	23.63	SS
2300.	97.12	6	1.0	1.0	10000.0	27.11	72.28	24.17	SS
2400.	93.92	6	1.0	1.0	10000.0	27.11	75.12	24.70	SS
2500.	90.85	6	1.0	1.0	10000.0	27.11	77.95	25.22	SS
2600.	87.92	6	1.0	1.0	10000.0	27.11	80.76	25.74	SS
2700.	85.11	6	1.0	1.0	10000.0	27.11	83.57	26.24	SS
2800.	82.43	6	1.0	1.0	10000.0	27.11	86.36	26.74	SS
2900.	79.86	б	1.0	1.0	10000.0	27.11	89.15	26.79	SS
3000.	77.46	6	1.0	1.0	10000.0	27.11	91.92	27.24	SS
3500.	67.04	6	1.0	1.0	10000.0	27.11	105.65	29.22	SS
4000.	58.75	б	1.0	1.0	10000.0	27.11	119.17	31.06	SS
4500.	52.05	6	1.0	1.0	10000.0	27.11	132.50	32.78	SS
5000.	46.56	6	1.0	1.0	10000.0	27.11	145.67	34.41	SS
5500.	41.99	6	1.0	1.0	10000.0	27.11	158.69	35.95	SS
6000.	38.13	6	1.0	1.0	10000.0	27.11	171.58	37.41	SS
6500.	34.85	6	1.0	1.0	10000.0	27.11	184.34	38.82	SS
7000.	32.10	6	1.0	1.0	10000.0	27.11	196.99	40.01	SS
7500.	29.71	6	1.0	1.0	10000.0	27.11	209.54	41.17	SS
8000.	27.61	6	1.0	1.0	10000.0	27.11	221.98	42.28	SS
8500.	25.76	6	1.0	1.0	10000.0	27.11	234.34	43.36	SS
9000.	24.13	6	1.0	1.0	10000.0	27.11	246.61	44.40	SS
9500.	22.66	6	1.0	1.0	10000.0	27.11	258.79	45.41	SS
10000.	21.35	6	1.0	1.0	10000.0	27.11	270.90	46.39	SS
15000.	13.22	6	1.0	1.0	10000.0	27.11	388.43	54.88	SS
20000.	9.525	6	1.0	1.0	10000.0	27.11	500.95	60.29	SS
	1 100 00000								
MAXIMUM	I-HR CONC	ENTRATION	AT UR	BEIOND	500. M		17 07	12 01	
500.	2/4.4	6	2.0	2.0	10000.0	18.05	1/.9/	13.91	55

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED

DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***** *** REGULATORY (Default) *** PERFORMING CAVITY CALCULATIONS WITH ORIGINAL SCREEN CAVITY MODEL (BRODE, 1988) *******

 *** CAVITY CALCULATION - 1 ***
 *** CAVITY CALCULATION - 2 ***

 CONC (UG/M**3) = 250.1
 CONC (UG/M**3) = 1338.

 CRIT WS @10M (M/S) = 3.19
 CRIT WS @10M (M/S) = 4.38

 CRIT WS @ HS (M/S) = 3.19
 CRIT WS @10M (M/S) = 4.38

 DILUTION WS (M/S) = 1.59
 DILUTION WS (M/S) = 2.19

 CAVITY HT (M) = 11.94
 CAVITY HT (M) = 10.67

 CAVITY LENGTH (M) = 21.34
 ALONGWIND DIM (M) = 156.67

 *** CAVITY CALCULATION - 1 *** ************ END OF CAVITY CALCULATIONS ***** *** SUMMARY OF SCREEN MODEL RESULTS *** ****** MAX CONC DIST TO CALCULATION TERRAIN (UG/M**3) MAX (M) HT (M) PROCEDURE _____ -----_____ 274.4 500. 0. SIMPLE TERRAIN 59. 250.1 BLDG. CAVITY-1 -- (DIST = CAVITY LENGTH) BLDG. CAVITY-2 1338. 25. -- (DIST = CAVITY LENGTH) ** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

Stack #4: 2 Diesel Crane Engines - DECKCRNS

12/11/06 12:14:26

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS: POINT SOURCE TYPE = 1.00000 18.2900 EMISSION RATE (G/S) = STACK HEIGHT (M) = STK INSIDE DIAM (M) = 35.9500 STK EXIT VELOCITY (M/S) = .0010 STK EXIT VELOCITY (M/S) = .0010 STK GAS EXIT TEMP (K) = 672.0000 AMBIENT AIR TEMP (K) = 273.0000 RECEPTOR HEIGHT (M) = .0000 URBAN/RURAL OPTION = BUILDING HEIGHT (M) = RURAL BUILDING HEIGHT (M) = 10.6700 MIN HORIZ BLDG DIM (M) = 21.3400 156.6700 MAX HORIZ BLDG DIM (M) =

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.
THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 1.881 M**4/S**3; MOM. FLUX = .000 M**4/S**2.

*** FULL METEOROLOGY ***

**** SCREEN AUTOMATED DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
500.	216.3	6	1.0	1.4	10000.0	26.62	19.51	17.90	HS
600.	195.7	6	1.0	1.4	10000.0	26.62	22.56	18.62	HS
700.	178.7	б	1.0	1.4	10000.0	26.62	25.61	19.33	HS
800.	164.5	б	1.0	1.4	10000.0	26.62	28.66	20.03	HS
900.	152.3	6	1.0	1.4	10000.0	26.62	31.70	20.72	HS
1000.	141.7	6	1.0	1.4	10000.0	26.62	34.73	21.39	HS
1100.	132.4	6	1.0	1.4	10000.0	26.62	37.74	22.05	HS
1200.	124.2	б	1.0	1.4	10000.0	26.62	40.73	22.71	HS
1300.	115.6	б	1.0	1.4	10000.0	26.62	43.71	22.65	HS
1400.	109.3	б	1.0	1.4	10000.0	26.62	46.67	23.25	HS
1500.	103.4	б	1.0	1.4	10000.0	26.62	49.62	23.79	HS
1600.	98.16	б	1.0	1.4	10000.0	26.62	52.55	24.32	HS
1700.	93.34	6	1.0	1.4	10000.0	26.62	55.46	24.85	HS
1800.	88.93	6	1.0	1.4	10000.0	26.62	58.37	25.37	HS
1900.	84.87	б	1.0	1.4	10000.0	26.62	61.25	25.87	HS
2000.	81.12	б	1.0	1.4	10000.0	26.62	64.13	26.37	HS
2100.	77.66	б	1.0	1.4	10000.0	26.62	66.99	26.87	HS
2200.	74.44	б	1.0	1.4	10000.0	26.62	69.84	27.35	HS
2300.	71.45	6	1.0	1.4	10000.0	26.62	72.68	27.83	HS
2400.	68.83	6	1.0	1.4	10000.0	26.62	75.50	27.54	HS
2500.	66.27	6	1.0	1.4	10000.0	26.62	78.32	28.02	HS
2600.	63.88	6	1.0	1.4	10000.0	26.62	81.12	28.42	HS
2700.	61.64	6	1.0	1.4	10000.0	26.62	83.92	28.81	HS
2800.	59.53	6	1.0	1.4	10000.0	26.62	86.70	29.20	HS
2900.	57.55	б	1.0	1.4	10000.0	26.62	89.47	29.58	HS
3000.	55.69	б	1.0	1.4	10000.0	26.62	92.24	29.95	HS
3500.	47.78	6	1.0	1.4	10000.0	26.62	105.93	31.75	HS
4000.	41.66	6	1.0	1.4	10000.0	26.62	119.41	33.44	HS
4500.	36.80	6	1.0	1.4	10000.0	26.62	132.72	35.03	HS
5000.	32.85	б	1.0	1.4	10000.0	26.62	145.87	36.55	HS
5500.	29.60	б	1.0	1.4	10000.0	26.62	158.87	37.99	HS
6000.	26.87	б	1.0	1.4	10000.0	26.62	171.75	39.38	HS
6500.	24.55	6	1.0	1.4	10000.0	26.62	184.50	40.71	HS
7000.	22.72	б	1.0	1.4	10000.0	26.62	197.14	41.51	HS
7500.	21.03	б	1.0	1.4	10000.0	26.62	209.68	42.62	HS
8000.	19.54	6	1.0	1.4	10000.0	26.62	222.12	43.69	HS
8500.	18.24	6	1.0	1.4	10000.0	26.62	234.46	44.73	HS
9000.	17.09	6	1.0	1.4	10000.0	26.62	246.72	45.73	HS
9500.	16.05	б	1.0	1.4	10000.0	26.62	258.91	46.70	HS
10000.	15.13	б	1.0	1.4	10000.0	26.62	271.01	47.65	HS
15000.	9.442	б	1.0	1.4	10000.0	26.62	388.50	55.49	HS
20000.	6.808	6	1.0	1.4	10000.0	26.62	501.01	60.84	HS
MAXIMUM	1-HR CONCEN	TRATION	AT OR	BEYOND	500. M	:			
500.	216.3	6	1.0	1.4	10000.0	26.62	19.51	17.90	HS
DWASH=	MEANS NO	CALC MA	DE (CON	C = 0.0	0)				
DWASH=N	U MEANS NO	ROITDIN	G DOWNW	ASH USI	ΞD				

DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** REGULATORY (Default) *** PERFORMING CAVITY CALCULATIONS WITH ORIGINAL SCREEN CAVITY MODEL (BRODE, 1988)

*** CAVITY CALCULAT	ION	- 1 ***	*** CAVITY CALCULATION	- 2 ***
CONC (UG/M**3)	=	398.8	CONC (UG/M**3) =	2928.
CRIT WS @10M (M/S)	=	1.00	CRIT WS @10M (M/S) =	1.00
CRIT WS @ HS (M/S)	=	1.13	CRIT WS @ HS (M/S) =	1.13
DILUTION WS (M/S)	=	1.00	DILUTION WS (M/S) =	1.00
CAVITY HT (M)	=	11.94	CAVITY HT (M) =	10.67
CAVITY LENGTH (M)	=	58.70	CAVITY LENGTH (M) =	24.90
ALONGWIND DIM (M)	=	21.34	ALONGWIND DIM (M) =	156.67

CALCULATION PROCEDURE	MAX CONC (UG/M**3)	DIST TO MAX (M)	TERRAIN HT (M)	
SIMPLE TERRAIN	216.3	500.	0.	
BLDG. CAVITY-1	398.8	59.		(DIST = CAVITY LENGTH)
BLDG. CAVITY-2	2928.	25.		(DIST = CAVITY LENGTH)

Stack #5: 2 Heat Boilers - HEATBOIL

12/11/06 12:14:26

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS:		
SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	1.00000
STACK HEIGHT (M)	=	17.4000
STK INSIDE DIAM (M)	=	.4600
STK EXIT VELOCITY (M/S) =	7.3362
STK GAS EXIT TEMP (K)	=	366.5000
AMBIENT AIR TEMP (K)	=	273.0000
RECEPTOR HEIGHT (M)	=	.0000
URBAN/RURAL OPTION	=	RURAL
BUILDING HEIGHT (M)	=	10.6700
MIN HORIZ BLDG DIM (M)	=	21.3400
MAX HORIZ BLDG DIM (M)	=	156.6700

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = .971 M**4/S**3; MOM. FLUX = 2.121 M**4/S**2.

*** FULL METEOROLOGY ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
500.	109.5		1.0	1.1	320.0	36.68	36.56	25.07	HS
600.	102.3	4	1.0	1.1	320.0	36.68	43.07	27.75	HS
700.	93.96	4	1.0	1.1	320.0	36.68	49.50	30.37	HS
800.	83.84	4	1.0	1.1	320.0	36.68	55.85	30.84	HS
900.	77.15	4	1.0	1.1	320.0	36.68	62.13	33.24	HS
1100.	70.74	4	1.0	1.1	320.0	36.68	68.35	35.22	HS
1200.	64.99 E0 9E	4	1.0	1.1	320.0	36.68	74.51	3/.15	HS
1200.	59.85 55 27	4	1.0	1.1	320.0	30.00	80.03	39.02	HS UC
1400	51 55	5	1.0	1.1	10000 0	38 95	46 46	22 81	сл РЧ
1500.	50 67	6	1 0	1 4	10000.0	38 95	49 42	23 37	HS
1600	49 75	6	1 0	1 4	10000 0	38 95	52 36	23 91	HS
1700	48.80	6	1.0	1.4	10000.0	38.95	55.28	24.44	HS
1800.	47.85	6	1.0	1.4	10000.0	38.95	58.19	24.97	HS
1900.	46.89	б	1.0	1.4	10000.0	38.95	61.09	25.49	HS
2000.	45.93	6	1.0	1.4	10000.0	38.95	63.97	25.99	HS
2100.	44.98	б	1.0	1.4	10000.0	38.95	66.84	26.49	HS
2200.	44.03	б	1.0	1.4	10000.0	38.95	69.70	26.98	HS
2300.	43.10	б	1.0	1.4	10000.0	38.95	72.54	27.47	HS
2400.	41.03	6	1.0	1.4	10000.0	38.95	75.37	27.18	HS
2500.	40.26	6	1.0	1.4	10000.0	38.95	78.19	27.66	HS
2600.	39.41	6	1.0	1.4	10000.0	38.95	81.00	28.06	HS
2700.	38.58	6	1.0	1.4	10000.0	38.95	83.80	28.46	HS
2800.	37.77	6	1.0	1.4	10000.0	38.95	86.58	28.85	HS
2900.	36.99	6	1.0	1.4	10000.0	38.95	89.36	29.24	HS
3000.	30.23	6	1.0	1.4	10000.0	38.95	92.13 105 92	29.62	HS
3500.	32.74	6	1.0	1.4	10000.0	38.95	110 22	31.44 22 1/	HS UC
4500.	29.75	6	1.0	1 4	10000.0	38 95	132 64	33.14	сл РЧ
5000	24.94	6	1.0	1.4	10000.0	38.95	145.80	36.27	HS
5500.	22.99	6	1.0	1.4	10000.0	38.95	158.81	37.73	HS
6000.	21.29	6	1.0	1.4	10000.0	38.95	171.69	39.12	HS
6500.	19.79	6	1.0	1.4	10000.0	38.95	184.45	40.46	HS
7000.	18.49	6	1.0	1.4	10000.0	38.95	197.09	41.27	HS
7500.	17.32	б	1.0	1.4	10000.0	38.95	209.63	42.38	HS
8000.	16.28	6	1.0	1.4	10000.0	38.95	222.07	43.46	HS
8500.	15.34	б	1.0	1.4	10000.0	38.95	234.42	44.50	HS
9000.	14.50	6	1.0	1.4	10000.0	38.95	246.68	45.51	HS
9500.	13.73	6	1.0	1.4	10000.0	38.95	258.87	46.49	HS
10000.	13.03	6	1.0	1.4	10000.0	38.95	270.97	47.44	HS
15000.	8.525	6	1.0	1.4	10000.0	38.95	388.48	55.31	HS
20000.	6.284	6	1.0	1.4	10000.0	38.95	500.99	60.67	HS
MAXIMUM	1-HR CONCEN	TRATION	AT OR	BEYOND	500. M	:		05 05	
500.	109.5	4	1.0	1.1	320.0	36.68	36.56	25.07	HS
DWASH=	MEANS NO	CALC MA	DE (CON	C = 0.0))				
DWASH=N	O MEANS NO	BUILDIN	G DOWNW	ASH USH	ED				
DWASH=H	S MEANS HUE	SER-SNYD	ER DOWN	WASH US	SED				
DWASH=S DWASH=N	'A MEANS SCH	NWASH N	OT APPL	ICABLE	USED X<3*LB				
***		(Dofau	~~~~~~]+) ***	* * * * * *	π				
DFDF	OPMING CAVI	TV CALC		rq					
WITH O	RIGINAL SCR	EEN CAUC	TTY MOD	DET.					
	(BRODE, 1	988)	111 1102						
******	****	*****	*****	*****	*				
*** CAV	ITY CALCULA	TION -	1 ***	*:	** CAVITY	CALCULA	TION - 2	* * *	
CONC (UG/M**3)	=	.0000	(CONC (UG/	M**3)	= .	0000	
CRIT W	S @10M (M/S) =	99.99	(CRIT WS @	010M (M/S) = 9	9.99	
CRIT W	S @ HS (M/S) =	99.99	(CRIT WS @	HS (M/S) = 9	9.99	

DILUTION WS (M/S)	=	99.99	DILUTION WS (M/S)	=	99.99
CAVITY HT (M)	=	11.94	CAVITY HT (M)	=	10.67
CAVITY LENGTH (M)	=	58.70	CAVITY LENGTH (M)	=	24.90
ALONGWIND DIM (M)	=	21.34	ALONGWIND DIM (M)	=	156.67

CAVITY CONC NOT CALCULATED FOR CRIT WS > 20.0 M/S. CONC SET = 0.0 $\,$

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
SIMPLE TERRAIN	109.5	500.	0.

Stack #6: 1 Logging Winch - LOGWNCH

12/11/06 12:14:26

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

VERSION DATED J0045

SIMPLE TERRAIN INPUTS:		
SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	1.00000
STACK HEIGHT (M)	=	7.7000
STK INSIDE DIAM (M)	=	.1000
STK EXIT VELOCITY (M/S	5)=	52.9734
STK GAS EXIT TEMP (K)	=	710.9000
AMBIENT AIR TEMP (K)	=	273.0000
RECEPTOR HEIGHT (M)	=	.0000
URBAN/RURAL OPTION	=	RURAL
BUILDING HEIGHT (M)	=	10.6700
MIN HORIZ BLDG DIM (M)) =	21.3400
MAX HORIZ BLDG DIM (M)) =	156.6700

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = .800 M**4/S**3; MOM. FLUX = 2.694 M**4/S**2. *** FULL METEOROLOGY *** **** SCREEN AUTOMATED DISTANCES *** **** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** DIST CONC UI10M USTR MIX HT DIUME SIGMA SIGMA

DIST	CONC		U10M	USTK	MIX HT	PLUME	SIGMA	SIGMA	
(M)	(UG/M**3)	STAB	(M/S)	(M/S)	(M)	HT (M)	Y (M)	Z (M)	DWASH
500.	452.8	б	1.5	1.5	10000.0	15.55	17.97	13.72	SS

600.	391.2	6	1.0	1.0 1	0000.0	19.45	21.24	13.43	SS
700.	356.6	6	1.0	1.0 1	0000.0	19.45	24.46	14.10	SS
800.	330.8	6	1.0	1.0 1	0000.0	19.45	27.63	14.96	SS
900	306.9	6	1 0	1 0 1	0000 0	19 45	30 78	15 79	SS
1000	285 0	6	1 0	1 0 1	0000.0	19.15	33 88	16 60	22
1100.	265.0	6	1 0	1 0 1	0000.0	10 /5	36.96	17 20	20
1200.	205.0	ć	1.0	1.0 1	0000.0	19.45	30.90	10 10	22
1200.	240.9	0	1.0	1.0 1	0000.0	19.45	40.01	18.10	22
1300.	230.5	6	1.0	1.0 1	0000.0	19.45	43.04	18.90	SS
1400.	215.6	6	1.0	1.0 1	0000.0	19.45	46.05	19.64	SS
1500.	202.1	6	1.0	1.0 1	0000.0	19.45	49.03	20.35	SS
1600.	189.8	6	1.0	1.0 1	0000.0	19.45	51.99	21.05	SS
1700.	179.6	6	1.0	1.0 1	0000.0	19.45	54.94	21.10	SS
1800.	169.6	6	1.0	1.0 1	0000.0	19.45	57.87	21.77	SS
1900.	160.5	6	1.0	1.0 1	0000.0	19.45	60.78	22.35	SS
2000.	152.2	6	1.0	1.0 1	0000.0	19.45	63.68	22.91	SS
2100.	144.6	6	1.0	1.0 1	0000.0	19.45	66.56	23.47	SS
2200.	137.6	6	1.0	1.0 1	0000.0	19.45	69.42	24.01	SS
2300.	131.1	6	1.0	1.0 1	0000.0	19.45	72.28	24.55	SS
2400	125.1	6	1.0	1.01	0000.0	19.45	75.12	25.07	SS
2500	119.6	6	1.0	1.0 1	0000.0	19.45	77.95	25.59	SS
2600	114 4	6	1 0	1 0 1	0000 0	19 45	80 76	26 10	20
2700	109 6	б К	1 0	1 0 1	0000 0	19 45	82 57	26 60	20
2800.	106 1	6	1 0	1 0 1	0000.0	10 15	86 36	20.00	00 00
2000.	101 0	6 G	1 0	1 0 1	0000.0	10 /F	00.30 00 1E	20.00	20
2000.	101.9 00 10	0 E	1 0		0000.0	10 /F	01 00	27.UO 27.47	22
3000.	20.12 00.00	C C	1.0	1.0 1 1 0 1	0000.0	10 45	91.94 105 65	21.41	22
JUU.	04.49	o G	1.0			10 45	110 17	29.43 21 06	22
4000.	/0.42	c c	1.0	1.0 I		10 45	120 50	31.20	55
4500.	0⊥.∠3 E2 05	6	1.0	1.0 1	0000.0	10.45	145 50	34.91	55
5000.	53.95	6	1.0	1.01	0000.0	19.45	145.67	34.58	SS
5500.	48.05	6	1.0	1.0 1	0000.0	19.45	158.69	36.11	SS
6000.	43.19	б	1.0	1.0 1	0000.0	19.45	171.58	37.57	SS
6500.	39.12	б	1.0	1.0 1	0000.0	19.45	184.34	38.97	SS
7000.	35.82	6	1.0	1.0 1	0000.0	19.45	196.99	40.10	SS
7500.	32.95	б	1.0	1.0 1	0000.0	19.45	209.54	41.26	SS
8000.	30.46	б	1.0	1.0 1	0000.0	19.45	221.98	42.37	SS
8500.	28.28	б	1.0	1.0 1	0000.0	19.45	234.34	43.45	SS
9000.	26.37	б	1.0	1.0 1	0000.0	19.45	246.61	44.49	SS
9500.	24.68	б	1.0	1.0 1	0000.0	19.45	258.79	45.49	SS
10000.	23.17	6	1.0	1.0 1	0000.0	19.45	270.90	46.47	SS
15000	14.02	6	1.0	1.0 1	0000.0	19.45	388 43	54.88	55
20000	10.00	6	1.0	1.0 1	0000.0	19.45	500.95	60.29	55
		5		1.0 I			200.20		55
4AXIMUM 1 500.	1-HR CONCENTF 452.8	RATION 6	AT OR B	EYOND 1.5 1	500. M: 0000.0	15.55	17.97	13.72	SS
DWAGU-	452.8		L.D	- 0 0)	0000.0	12.55	17.97	13.72	55
DWASH= DWASH=NO	MEANS NO CA D MEANS NO BU	JILDING	DE (CONC DOWNWA	= 0.0) SH USED					
DWASH=HS	S MEANS HUBER	R-SNYDE	R DOWNW	ASH USE	D				
DWASH=SS	5 MEANS SCHUI	MAN-SC	CIRE DOWN	NWASH U	SED				
DWASH=NA	A MEANS DOWNW	IASH NC	T APPLI	CABLE, 2	X<3*LB				
******	******	******	******	*****					
***	REGULATORY (Defaul	.t) ***						
PERFO	ORMING CAVITY	CALCU	JLATIONS						
WITH OF	RIGINAL SCREE	EN CAVI	TY MODE	L					
	(BRODE, 198	8)							
******	* * * * * * * * * * * * * *	******	******	*****					
*** CAV	ITY CALCULATI	:ON - 1	* * *	* * *	CAVITY	CALCULA	TION - 2	* * *	
CONC (I	JG/M**3)	= 2	292.6	CO	NC (UG/N	4**3)	= 1	518.	
CRIT WS	S @10M (M/S)	=	2.73	CR	IT WS @	10M (M/S) =	3.86	
CRIT W	5 @ HS (M/S)	=	2.73	CR	IT WS @	HS (M/S) =	3.86	
DILITT	ON WS (M/S)	=	1.36	דת	LUTION	NS (M/S)	, =	1.93	
CAVITY	HT (M)	= 1	1.94	CA	VITY HT	(M)	= 1	0.67	
CAVITY	LENGTH (M)	= 5	8.70	CD.	VTTY 1.FN	JGTH (M)	= 2	4.90	
	IND DIM (M)	_ ~	01 34	лт		DTM (M)	= 154	 6 67	
MDNIOTY	TIA DIA (M)	- 2	1.01	AL		(א) הידים	- 130	0.07	
******	* * * * * * * * * * * * *	******	******	*****					
ENI	D OF CAVITY (CALCULA	TIONS						
* * * * * * * * *	* * * * * * * * * * * * * *	******	*******	*****					

CALCULATION PROCEDURE	MAX CONC (UG/M**3)	DIST TO MAX (M)	TERRAIN HT (M)	
SIMPLE TERRAIN	452.8	500.	0.	
BLDG. CAVITY-1	292.6	59.		(DIST = CAVITY LENGTH)
BLDG. CAVITY-2	1518.	25.		(DIST = CAVITY LENGTH)

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

Kapitan Dranitsyn, Initial Point Source - KAPITAN

12/11/06 09:02:49

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS:		
SOURCE TYPE	=	POINT
EMISSION RATE (G/S)	=	1.00000
STACK HEIGHT (M)	=	35.0520
STK INSIDE DIAM (M)	=	.3198
STK EXIT VELOCITY (M/S)) =	41.5025
STK GAS EXIT TEMP (K)	=	523.1500
AMBIENT AIR TEMP (K)	=	273.0000
RECEPTOR HEIGHT (M)	=	.0000
URBAN/RURAL OPTION	=	RURAL
BUILDING HEIGHT (M)	=	.0000
MIN HORIZ BLDG DIM (M)	=	.0000
MAX HORIZ BLDG DIM (M)	=	.0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 4.975 M**4/S**3; MOM. FLUX = 22.980 M**4/S**2.

*** FULL METEOROLOGY ***

DIST	CONC		U10M	USTK	MIX HT	PLUME	SIGMA	SIGMA	
(M)	(UG/M**3)	STAB	(M/S)	(M/S)	(M)	HT (M)	Y (M)	Z (M)	DWASH
500.	15.32	1	1.0	1.1	320.0	100.42	114.57	106.31	NO
600.	14.48	2	1.5	1.6	480.0	78.63	98.29	63.64	NO
700.	14.15	2	1.0	1.1	320.0	100.42	113.52	76.23	NO
800.	13.90	3	1.5	1.7	480.0	77.02	84.99	51.28	NO
900.	13.91	3	1.5	1.7	480.0	77.02	94.44	56.80	NO
1000.	13.48	3	1.5	1.7	480.0	77.02	103.81	62.31	NO
1100.	13.05	3	1.0	1.1	320.0	98.01	113.89	69.09	NO
1200.	12.89	3	1.0	1.1	320.0	98.01	123.04	74.44	NO
1300.	12.52	3	1.0	1.1	320.0	98.01	132.13	79.78	NO

1400.	12.04	3	1.0	1.1	320.0	98.01	141.16	85.10	NO
1500.	11.49	3	1.0	1.1	320.0	98.01	150.14	90.40	NO
1600.	10.92	3	1.0	1.1	320.0	98.01	159.06	95.69	NO
1700.	10.34	3	1.0	1.1	320.0	98.01	167.94	100.95	NO
1800.	9.770	3	1.0	1.1	320.0	98.01	176.76	106.20	NO
1900.	9.412	4	1.5	1.8	480.0	74.47	122.65	49.81	NO
2000.	9.323	4	1.5	1.8	480.0	74.47	128.44	51.40	NO
2100	9.204	4	1.5	1.8	480.0	74.47	134.20	52.96	NO
2200	9.063	4	1.5	1.8	480.0	74.47	139.94	54.50	NO
2300	8 905	4	1 5	1 8	480 0	74 47	145 65	56 02	NO
2400	8 735	4	1 5	1 8	480 0	74 47	151 33	57 51	NO
2500	8 556	4	1 5	1 8	480 0	74 47	157 00	58 99	NO
2600.	8 372	4	1 5	1 8	480 0	74 47	162 63	60 44	NO
2000.	8 185	4	15	1 8	480.0	74 47	168 25	61 88	NO
2800	8 083	4	1 0	1 2	320 0	94 18	174 30	64 54	NO
2000.	9 014		1 0	1 2	320.0	0/ 10	170 07	65 01	NO
2000.	7 925		1 0	1 2	320.0	0/ 10	195 /1	67 27	NO
3000.	7.935	4	1.0	1 2	320.0	04 10	212 96	72 15	NO
3500.	7.413	4	1.0	1.4	320.0	94.10	212.00	73.45	NO
4000.	7.035	5	1.0	1.6	10000.0	//.86	1/9.48	51.25	NO
4500.	6./66	5	1.0	1.6	10000.0	//.86	199.46	54.22	NO
5000.	6.464	5	1.0	1.6	10000.0	77.86	219.20	57.04	NO
5500.	6.152	5	1.0	1.6	10000.0	.77.86	238.73	59.72	NO
6000.	5.845	5	1.0	1.6	10000.0	.77.86	258.06	62.30	NO
6500.	5.549	5	1.0	1.6	10000.0	77.86	277.21	64.77	NO
7000.	5.268	5	1.0	1.6	10000.0	77.86	296.19	67.16	NO
7500.	5.003	5	1.0	1.6	10000.0	77.86	315.01	69.46	NO
8000.	4.884	6	1.0	2.0	10000.0	67.73	222.18	43.30	NO
8500.	4.784	6	1.0	2.0	10000.0	67.73	234.53	44.35	NO
9000.	4.680	б	1.0	2.0	10000.0	67.73	246.78	45.37	NO
9500.	4.575	6	1.0	2.0	10000.0	67.73	258.96	46.36	NO
10000.	4.469	б	1.0	2.0	10000.0	67.73	271.06	47.31	NO
15000.	3.522	6	1.0	2.0	10000.0	67.73	388.54	55.67	NO
20000.	2.821	б	1.0	2.0	10000.0	67.73	501.04	61.01	NO
MAXIMUM 1 500.	L-HR CONC 15.32	CENTRATION 2 1	AT OR 1 1.0	BEYOND 1.1	500. М 320.0	: 100.42	114.57	106.31	NO
DWASH= DWASH=NO DWASH=HS DWASH=SS DWASH=NA	MEANS N MEANS N MEANS H MEANS S A MEANS I	NO CALC MADI NO BUILDING HUBER-SNYDEI SCHULMAN-SC DOWNWASH NO	E (CONO DOWNWA R DOWNW IRE DOW F APPL	C = 0.0 ASH USE WASH USE WNWASH ICABLE,)) ED EED USED X<3*LB				
**** SCREF	******** EN DISCRE	************ ETE DISTANC: *****	* * * * * * ES * * * * * * * * *						
*** TERRA	AIN HEIGH	HT OF 0.	M ABO	/E STAC	CK BASE U	SED FOR	FOLLOWIN	G DISTAN	CES ***
DIST	CONC		U10M	USTK	MIX HT	PLUME	SIGMA	SIGMA	
(M)	(UG/M**3	3) STAB	(M/S)	(M/S)	(M)	HT (M)	Y (M)	Z (M)	DWASH
13500.	3.779	6	1.0	2.0	10000.0	67.73	353.90	53.36	NO
DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB									
* * * *	********	*****	*****	******	****				
***	SUMMARY	OF SCREEN I	MODEL H	RESULTS	5 ***				
CALCULAT	LION	MAX CON	C D:	IST TO	TERRAI	N			
PROCEDU	JRE	(UG/M**3) M2	AX (M)	HT (M)			
SIMPLE TE	ERRAIN	15.32		500.	0	- ·			
*******	* * * * * * * * * *	*****	*****	******	*******	* * *			

** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS **

 Kapitan Dranitsyn, Final Area Source - KAP_BIG
 12/11/06

 09:05:32

 *** SCREEN3 MODEL RUN ***

 *** VERSION DATED 96043 ***

 SIMPLE TERRAIN INPUTS:

 SOURCE TYPE
 = AREA

 EMISSION RATE (G/(S-M**2))
 .666667E-08

 SOURCE HEIGHT (M)
 = 67.7300

 LENGTH OF LARGER SIDE (M)
 = 15000.0000

 LENGTH OF SMALLER SIDE (M)
 = 10000.0000

 RECEPTOR HEIGHT (M)
 = .0000

 URBAN/RURAL OPTION
 = RURAL

 THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.

 THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = .000 M**4/S**3; MOM. FLUX = .000 M**4/S**2.

*** FULL METEOROLOGY ***

DIST	CONC	STAR	U10M	USTK	MIX HT	PLUME HT (M)	MAX DIR
	(00/11 5)						(DEG)
500.	.2565	4	1.0	1.3	320.0	67.73	31.
600.	.2591	4	1.0	1.3	320.0	67.73	31.
700.	.2617	4	1.0	1.3	320.0	67.73	31.
800.	.2642	4	1.0	1.3	320.0	67.73	31.
900.	.2668	4	1.0	1.3	320.0	67.73	31.
1000.	.2694	4	1.0	1.3	320.0	67.73	31.
1100.	.2719	4	1.0	1.3	320.0	67.73	31.
1200.	.2744	4	1.0	1.3	320.0	67.73	31.
1300.	.2769	4	1.0	1.3	320.0	67.73	31.
1400.	.2794	4	1.0	1.3	320.0	67.73	31.
1500.	.2819	4	1.0	1.3	320.0	67.73	31.
1600.	.2843	4	1.0	1.3	320.0	67.73	31.
1700.	.2868	4	1.0	1.3	320.0	67.73	31.
1800.	.2892	4	1.0	1.3	320.0	67.73	31.
1900.	.2909	4	1.0	1.3	320.0	67.73	30.
2000.	.2933	4	1.0	1.3	320.0	67.73	30.
2100.	.2957	4	1.0	1.3	320.0	67.73	30.
2200.	.2981	4	1.0	1.3	320.0	67.73	30.
2300.	.3006	4	1.0	1.3	320.0	67.73	30.
2400.	.3029	4	1.0	1.3	320.0	67.73	30.
2500.	.3053	4	1.0	1.3	320.0	67.73	30.

2600.	.3077	4	1.0	1.3	320.0	67.73	30.		
2700.	.3101	4	1.0	1.3	320.0	67.73	30.		
2800.	.3124	4	1.0	1.3	320.0	67.73	30.		
2900.	.3148	4	1.0	1.3	320.0	67.73	30.		
3000.	.3171	4	1.0	1.3	320.0	67.73	30.		
3500.	.3287	4	1.0	1.3	320.0	67.73	30.		
4000.	.3400	4	1.0	1.3	320.0	67.73	30.		
4500.	.3505	4	1.0	1.3	320.0	67.73	29.		
5000.	.3636	4	1.0	1.3	320.0	67.73	28.		
5500.	.3756	4	1.0	1.3	320.0	67.73	29.		
6000.	.3864	4	1.0	1.3	320.0	67.73	29.		
6500.	.3971	4	1.0	1.3	320.0	67.73	29.		
7000.	.4071	4	1.0	1.3	320.0	67.73	28.		
7500.	.4251	4	1.0	1.3	320.0	67.73	27.		
8000.	.4366	4	1.0	1.3	320.0	67.73	28.		
8500.	.4477	4	1.0	1.3	320.0	67.73	30.		
9000.	.4563	4	1.0	1.3	320.0	67.73	33.		
9500.	.4576	4	1.0	1.3	320.0	67.73	32.		
10000.	.4631	4	1.0	1.3	320.0	67.73	33.		
15000.	.3854	4	1.0	1.3	320.0	67.73	31.		
20000.	.3520	5	1.0	2.0	10000.0	67.73	31.		
MAXIMUM	1-HR CONCEN	TRATION	AT OR	BEYOND	500.1	4:			
10123.	.4633	4	1.0	1.3	320.0	67.73	33.		
* * * * * * * *	******	******	*****						
*** SCRE	CEN DISCRETE	DISTANC	'ES ***						
* * * * * * * *	*********	* * * * * * * *	*****						
*** TERF	RAIN HEIGHT (OF 0.	M ABO	VE STAC	K BASE U	JSED FOR	FOLLOWING	DISTANCES	***
DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)		
13500.	.4102	4	1.0	1.3	320.0	67.73	32.		

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
SIMPLE TERRAIN	.4633	10123.	0.

Fennica/Nordica, Initial Point Source - FENNICA 12/11/06 09:02:49 *** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 *** SIMPLE TERRAIN INPUTS: SOURCE TYPE=POINTEMISSION RATE (G/S)=1.00000STACK HEIGHT (M)=32.0040STK INSIDE DIAM (M)=.2659 STACK HEIGHI (M)=.2007STK INSIDE DIAM (M)=.2007STK EXIT VELOCITY (M/S)36.0084STK GAS EXIT TEMP (K)=STR DATE ATR TEMP (K)=273.0000.0000 STACK HEIGHT (M) RECEPTOR HEIGHT (M) = = .0000 URBAN/RURAL OPTION RURAL .0000 .0000 .0000 BUILDING HEIGHT (M) = MIN HORIZ BLDG DIM (M) = MAX HORIZ BLDG DIM (M) = THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED. BUOY. FLUX = 3.269 M**4/S**3; MOM. FLUX = 10.920 M**4/S**2. *** FULL METEOROLOGY *** *****

DIST	CONC	STAR	U10M (M/S)	USTK	MIX HT	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
(1.1)	(00/11 5)		(11/0)	(11/0)	(11)				
500.	21.16	2	1.5	1.6	480.0	64.02	83.26	51.91	NO
600.	21.29	2	1.0	1.1	320.0	80.02	98.46	63.90	NO
700.	21.05	3	1.5	1.7	480.0	62.92	75.01	45.00	NO
800.	20.37	3	1.5	1.7	480.0	62.92	84.61	50.63	NO
900.	20.44	3	1.0	1.1	320.0	78.38	94.61	57.08	NO
1000.	19.88	3	1.0	1.1	320.0	78.38	103.96	62.56	NO
1100.	18.94	3	1.0	1.1	320.0	78.38	113.23	68.01	NO
1200.	17.83	3	1.0	1.1	320.0	78.38	122.43	73.44	NO
1300.	16.67	3	1.0	1.1	320.0	78.38	131.57	78.84	NO
1400.	15.52	3	1.0	1.1	320.0	78.38	140.64	84.22	NO
1500.	15.05	4	1.5	1.8	480.0	61.17	98.89	42.49	NO
1600.	14.77	4	1.5	1.8	480.0	61.17	104.82	44.23	NO
1700.	14.44	4	1.5	1.8	480.0	61.17	110.72	45.93	NO
1800.	14.06	4	1.5	1.8	480.0	61.17	116.58	47.60	NO
1900.	13.86	4	1.0	1.2	320.0	75.76	122.77	50.11	NO
2000.	13.74	4	1.0	1.2	320.0	75.76	128.55	51.69	NO
2100.	13.59	4	1.0	1.2	320.0	75.76	134.31	53.24	NO
2200.	13.39	4	1.0	1.2	320.0	75.76	140.04	54.77	NO
2300.	13.17	4	1.0	1.2	320.0	75.76	145.75	56.28	NO
2400.	12.93	4	1.0	1.2	320.0	75.76	151.43	57.77	NO
2500.	12.68	4	1.0	1.2	320.0	75.76	157.09	59.24	NO
2600.	12.42	4	1.0	1.2	320.0	75.76	162.73	60.68	NO
2700.	12.15	4	1.0	1.2	320.0	75.76	168.34	62.12	NO
2800.	11.88	4	1.0	1.2	320.0	75.76	173.93	63.53	NO
2900.	11.61	4	1.0	1.2	320.0	75.76	179.51	64.92	NO

3000.11.3441.01.2320.075.76185.0666.313500.10.0541.01.2320.075.76212.5572.564000.9.10751.01.51000.069.62179.3850.914500.8.56051.01.51000.069.62199.3753.905000.8.02651.01.510000.069.62219.1256.745500.7.52051.01.510000.069.62238.6659.446000.7.16361.01.910000.060.89171.7838.14 NO NO NO NO NO NO NO 6500. 7.023 6 1.0 1.9 10000.0 60.89 184.53 39.52 NO 1.910000.060.89197.171.910000.060.89209.70 7000. 6.861 7500. 6.661 6 1.0 6 1.0 40.84 41.98 NO NO 6 1.0 1.9 10000.0 60.89 222.14 43.08 8000. 6.460 NO

 6
 1.0
 1.9
 10000.0
 60.89
 234.48
 44.14

 6
 1.0
 1.9
 10000.0
 60.89
 246.75
 45.16

 6
 1.0
 1.9
 10000.0
 60.89
 258.93
 46.15

 44.14 8500. 6.263 NO 9000. 6.070 9500. 5.883 NO NO 6 1.0 1.9 10000.0 60.89 271.03 10000. 5.703 47.11 NO 15000. 4.265 20000. 3.338 6 1.0 6 1.0 1.910000.060.89388.5255.501.910000.060.89501.0260.86 NO NO
 MAXIMUM
 1-HR
 CONCENTRATION
 AT
 OR
 BEYOND
 500.
 M:

 555.
 21.54
 2
 1.0
 1.1
 320.0
 80.02
 92.07
 59.02
 NO DWASH= MEANS NO CALC MADE (CONC = 0.0)DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ****** *** SCREEN DISCRETE DISTANCES *** ******************************** *** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** CONCU10MUSTKMIX HTPLUMESIGMA(UG/M**3)STAB(M/S)(M/S)(M)HT(M)Y(M)------------------------------DIST SIGMA Z (M) DWASH (M) _____ 6000. 7.163 6 1.0 1.9 10000.0 60.89 171.78 38.14 NO DWASH= MEANS NO CALC MADE (CONC = 0.0)DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***** *** SUMMARY OF SCREEN MODEL RESULTS *** ****** MAX CONC DIST TO TERRAIN CALCULATION PROCEDURE (UG/M**3) MAX (M) HT (M) _____ _____ _____ _____ SIMPLE TERRAIN 21.54 555. 0. ***** ** REMEMBER TO INCLUDE BACKGROUND CONCENTRATIONS ** *****

*** SCREEN3 MODEL RUN ***
*** VERSION DATED 96043 ***
SIMPLE TERRAIN INPUTS:
SOURCE TYPE = AREA
EMISSION RATE (G/(S-M**2)) = .200000E-07
SOURCE HEIGHT (M) = 60.8900
LENGTH OF LARGER SIDE (M) = 10000.0000
LENGTH OF SMALLER SIDE (M) = 5000.0000
RECEPTOR HEIGHT (M) = .0000
URBAN/RURAL OPTION = RURAL
THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.
THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

12/11/06 09:05:33

MODEL ESTIMATES DIRECTION TO MAX CONCENTRATION

BUOY. FLUX = .000 M**4/S**3; MOM. FLUX = .000 M**4/S**2.

*** FULL METEOROLOGY ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	MAX DIR (DEG)
500.	.5526	4	1.0	1.3	320.0	60.89	22.
600.	.5626	4	1.0	1.3	320.0	60.89	22.
700.	.5726	4	1.0	1.3	320.0	60.89	22.
800.	.5810	4	1.0	1.3	320.0	60.89	21.
900.	.5910	4	1.0	1.3	320.0	60.89	21.
1000.	.6009	4	1.0	1.3	320.0	60.89	21.
1100.	.6107	4	1.0	1.3	320.0	60.89	21.
1200.	.6205	4	1.0	1.3	320.0	60.89	21.
1300.	.6302	4	1.0	1.3	320.0	60.89	21.
1400.	.6399	4	1.0	1.3	320.0	60.89	21.
1500.	.6495	4	1.0	1.3	320.0	60.89	21.
1600.	.6590	4	1.0	1.3	320.0	60.89	21.
1700.	.6683	4	1.0	1.3	320.0	60.89	21.
1800.	.6758	4	1.0	1.3	320.0	60.89	20.
1900.	.6851	4	1.0	1.3	320.0	60.89	20.
2000.	.6943	4	1.0	1.3	320.0	60.89	20.
2100.	.7034	4	1.0	1.3	320.0	60.89	20.
2200.	.7125	4	1.0	1.3	320.0	60.89	20.
2300.	.7215	4	1.0	1.3	320.0	60.89	20.
2400.	.7304	4	1.0	1.3	320.0	60.89	20.
2500.	.7393	4	1.0	1.3	320.0	60.89	20.
2600.	.7482	4	1.0	1.3	320.0	60.89	20.
2700.	.7570	4	1.0	1.3	320.0	60.89	20.
2800.	.7641	4	1.0	1.3	320.0	60.89	19.
2900.	.7728	4	1.0	1.3	320.0	60.89	19.
3000.	.7815	4	1.0	1.3	320.0	60.89	19.
3500.	.8224	4	1.0	1.3	320.0	60.89	18.
4000.	.8640	4	1.0	1.3	320.0	60.89	18.
4500.	.9030	4	1.0	1.3	320.0	60.89	17.
5000.	.9456	4	1.0	1.3	320.0	60.89	21.
5500.	.9830	4	1.0	1.3	320.0	60.89	21.
6000.	1.024	4	1.0	1.3	320.0	60.89	21.
6500. 7000	1.040	4	1.0	1.3	320.0	60.89	24.
7000.	1.034	4	1.0	1.3	320.0	60.89	25.
/500.	1.013	4	1.0	1.3	320.0	60.89	24.
8000.	.98/1	4	1.0	⊥.3	320.0	60.89	24.

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
SIMPLE TERRAIN	1.041	6609.	0.

Jim Kilabuk - KILABUK

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

SIMPLE TERRAIN INPUTS:

12/11/06 09:02:49

=	POINT
=	1.00000
=	15.2400
=	.1836
/S)=	39.9990
) =	699.8167
=	273.0000
=	.0000
=	RURAL
=	.0000
= (P	.0000
= (P	.0000
	= = (S)=) = = = = (1) = (1) =

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 2.015 M**4/S**3; MOM. FLUX = 5.258 M**4/S**2.

*** FULL METEOROLOGY ***

DIST	CONC		U10M	USTK	MIX HT	PLUME	SIGMA	SIGMA	
(M)	(UG/M**3)	STAB	(M/S)	(M/S)	(M)	HT (M)	Y (M)	Z (M)	DWASH
500.	56.84	3	1.5	1.6	480.0	38.40	55.17	33.10	NO
600.	53.26	4	2.0	2.1	640.0	32.25	42.99	21.76	NO
700.	51.91	4	2.0	2.1	640.0	32.25	49.43	24.52	NO
800.	50.13	4	1.5	1.6	480.0	37.92	55.95	27.56	NO
900.	48.17	4	1.5	1.6	480.0	37.92	62.22	30.17	NO
1000.	45.47	4	1.5	1.6	480.0	37.92	68.43	32.74	NO
1100.	42.87	4	1.0	1.1	320.0	49.26	74.94	35.48	NO
1200.	41.40	4	1.0	1.1	320.0	49.26	81.02	37.38	NO
1300.	39.77	4	1.0	1.1	320.0	49.26	87.06	39.22	NO
1400.	38.07	4	1.0	1.1	320.0	49.26	93.06	41.03	NO
1500.	36.35	4	1.0	1.1	320.0	49.26	99.02	42.79	NO
1600.	34.68	4	1.0	1.1	320.0	49.26	104.94	44.51	NO
1700.	33.06	4	1.0	1.1	320.0	49.26	110.83	46.20	NO
1800.	31.50	4	1.0	1.1	320.0	49.26	116.69	47.86	NO
1900.	30.03	4	1.0	1.1	320.0	49.26	122.52	49.49	NO
2000.	29.17	5	1.0	1.2	10000.0	50.15	96.22	34.94	NO
2100.	29.47	6	1.0	1.3	10000.0	43.41	67.04	23.62	NO
2200.	29.77	6	1.0	1.3	10000.0	43.41	69.89	24.16	NO
2300.	29.98	6	1.0	1.3	10000.0	43.41	72.72	24.69	NO
2400.	30.10	6	1.0	1.3	10000.0	43.41	75.55	25.21	NO
2500.	30.15	6	1.0	1.3	10000.0	43.41	78.36	25.72	NO
2600.	30.13	6	1.0	1.3	10000.0	43.41	81.16	26.22	NO
2700.	30.06	6	1.0	1.3	10000.0	43.41	83.96	26.71	NO
2800.	29.95	6	1.0	1.3	10000.0	43.41	86.74	27.20	NO
2900.	29.79	6	1.0	1.3	10000.0	43.41	89.51	27.68	NO
3000.	29.60	6	1.0	1.3	10000.0	43.41	92.27	28.15	NO
3500.	27.96	6	1.0	1.3	10000.0	43.41	105.96	30.08	NO
4000.	26.23	6	1.0	1.3	10000.0	43.41	119.44	31.87	NO
4500.	24.55	6	1.0	1.3	10000.0	43.41	132.75	33.55	NO
5000.	22.96	6	1.0	1.3	10000.0	43.41	145.89	35.14	NO
5500.	21.50	6	1.0	1.3	10000.0	43.41	158.90	36.65	NO
6000.	20.16	6	1.0	1.3	10000.0	43.41	171.77	38.09	NO
6500.	18.94	6	1.0	1.3	10000.0	43.41	184.52	39.47	NO
7000.	17.82	6	1.0	1.3	10000.0	43.41	197.16	40.80	NO
7500.	16.80	6	1.0	1.3	10000.0	43.41	209.69	41.94	NO
8000.	15.88	6	1.0	1.3	10000.0	43.41	222.13	43.04	NO
8500.	15.04	б	1.0	1.3	10000.0	43.41	234.48	44.10	NO
9000.	14.28	б	1.0	1.3	10000.0	43.41	246.74	45.12	NO
9500.	13.58	б	1.0	1.3	10000.0	43.41	258.92	46.11	NO
10000.	12.94	б	1.0	1.3	10000.0	43.41	271.02	47.08	NO
15000.	8.625	6	1.0	1.3	10000.0	43.41	388.51	55.47	NO

20000. 6.422 6 1.0 1.3 10000.0 43.41 501.01 60.83 NO MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 500. M: 1.5 1.6 480.0 38.40 55.17 33.10 500. 56.84 3 NO DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB ***** *** SCREEN DISCRETE DISTANCES *** ********* *** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES *** U10M USTK MIX HT PLUME SIGMA SIGMA DIST CONC (M) (UG/M**3) STAB (M/S) (M/S) (M) HT (M) Y (M) Z (M) DWASH 500. 56.84 3 1.5 1.6 480.0 38.40 55.17 33.10 NO

DWASH= MEANS NO CALC MADE (CONC = 0.0) DWASH=NO MEANS NO BUILDING DOWNWASH USED DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
SIMPLE TERRAIN	56.84	500.	0.